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Abstract

The positive reciprocal pairwise comparison matrix (PCM) is a well established
technique and widely used in multiple criteria decision making (MCDM) methods
to perform pairwise comparisons and derive the weight vectors of being compared
items, especially in the analytical hierarchy (network) process (AHP/ANP). The
PCM is also used to quantify the qualitative and/or intangible attributes into mea-
surable quantities. Consistency test, inconsistent data identification and adjustment,
missing or uncertain data estimation, and sensitivity analysis of rank reversal are
important research issues in this field. Although these issues have been extensively
studied, there is no universally accepted, simple and generalized data processing
model to handle the above mentioned issues simultaneously. In this book, the
maximum eigenvalue threshold method is proposed as the new consistency index
for the AHP/ANP. An induced bias matrix model (IBMM) is proposed to identify
and adjust the inconsistent data, and estimate the missing or uncertain data. Based
on the IBMM, several questionnaire design improvement formats are proposed
to quickly collect the data to make rapid and efficient decision making. Besides,
the IBMM is further used to analyze the sensitivity of rank reversal issue when
adding new criteria or alternatives or deleting old criteria or alternatives. Finally, two
applications of IBMM, task scheduling and resource allocation in cloud computing
environment, and risk assessment and decision analysis, are used to illustrate the
proposed IBMM. As an extended model of IBMM, an induced arithmetic average
bias matrix (IAABM) is described in detail in final Chapter.
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Chapter 1
Introduction

In complex decision making environment, decision making usually involves
tangible and intangible multiple criteria and alternatives to choose from. To deal
with such qualitative and quantitative factors in multiple criteria decision making
(MCDM), in 1970s, Saaty (1978, 1979, 1980) proposed an Analytical Hierarchy
Process (AHP). Since then, this method has been extensively applied into many real
applications, for instance in manufacturing systems (Li and Huang 2009), quality
consultants (Cebeci and Ruan 2007), software evaluation (Cebeci 2009; Peng et al.
2011a), supplier evaluation and selection (Akarte et al. 2001; Handfield et al. 2002;
Chan 2003; Bayazit 2006; Chamodrakas et al. 2010; Labib 2011), strategy selection
(Li and Li 2009; Chen and Wang 2010), weapon selection (Dagdeviren et al. 2009),
project selection (Enea and Piazza 2004; Amiri 2010).

During the process of decision making, especially for some complex decision
making problems, it is preferred to compare two criteria/attributes at one time
than to compare several criteria/attributes simultaneously. Therefore, the pairwise
comparison technique, originally proposed by Thurstone (1927), is creatively used
in the analytical hierarchy process (AHP) to pairwise compare and determine
the relative importance of two attributes or alternatives with respect to a given
criterion. All pairwise comparisons are then arranged in a matrix A D .aij /n�n,
and popularly called pairwise comparison matrix (PCM hereinafter) in literature.
A PCM is sometimes called a positive reciprocal matrix since it should satisfy
the positive reciprocal property: aij D 1=aj i , aij > 0 for all i and j. In addition
to the positive reciprocal property, a PCM is said to be perfectly consistent if it
satisfies the relationship: aij D aikakj for all i, j and k, which is often called cardinal
consistent condition.

The PCM usually consists of elements expressed on a numerical scale to
quantify the qualitative decision problem. Therefore, the first issue for a PCM is
that how to develop a scale to transfer the linguistic description to the numerical
values, including 9-point Ratio Scale introduced by Saaty (1978), Differences Scale
proposed by Triantaphyllou and Mann (1995) and the Exponential Scales developed
by Lootsma (1988, 1991) etc.

G. Kou et al., Data Processing for the AHP/ANP, Quantitative Management 1,
DOI 10.1007/978-3-642-29213-2 1, © Springer-Verlag Berlin Heidelberg 2013
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2 1 Introduction

The values of elements in a PCM are given by decision makers based on their
experiences and expertise, thus the pairwise comparison matrix (PCM) could be
inconsistent due to the limitations of decision makers’ experiences and expertise
as well as the complexity nature of the decision problem. For instance, assume we
have three comparison alternatives A, B and C, if A is preferred to B m times, and
B is preferred to C n times, but A is not preferred to C mn times, which violates
the aforementioned cardinal consistent condition, and called cardinal inconsistency.
However, if A is just preferred to B, and B is just preferred to C, but A is not
preferred to C, then it is called ordinal inconsistency. In this book, we mainly
focus on the cardinal inconsistency issue, and in general, say it inconsistency. It is
unrealistic to obtain a perfectly consistent PCM in practice, therefore, AHP allows
a certain level of inconsistency of the PCM, which is measured by the consistency
ratio (CR) (Saaty 1980), that is, CR D CI=RI < 0:1, where the Consistency Index
CI D .�max � n/ = .n � 1/, RI is the average Random Index based on Matrix Size
n, �max is the maximum eigenvalue of matrix A (Saaty 1991). If the CR < 0.1,
then the PCM is said to be of acceptable consistency indicating the inconsistency
is relatively small, otherwise the inconsistent elements should be identified and
adjusted in order to make a valid decision. However, as the CR method itself can
not identify the most inconsistent elements, Koczkodaj (1993) proposed a new
consistency measure CM, based on the properties of basic comparison matrices of
3rd order. Peláez and Lamata (2003) developed a method based on the determinant
of the matrix. Besides, the threshold value of 0.1 has received criticisms since
it lacks a meaningful interpretation. For instance, Aguarón and Moreno-Jiménez
(2003) proposed different thresholds for the matrices with different orders to provide
an interpretation of the inconsistency threshold analogous to the CR D 10%, that is,
0.3147 for n D 3, 0.3526 for n D 4 and 0.370 for n > 4. Alonso and Lamata (2006)
formulated a regression of the random indices of maximum eigenvalue. Besides,
many statistical approaches for consistency test in AHP have also been proposed
(Moreno and Vargas 1993; Vargas 2008).

In an n � n PCM, the decision makers have to make n .n � 1/ =2 comparisons
to get a complete PCM. Once the PCM is determined, the final priority vector of
the decision making problems can be derived by the following several methods:
Eigenvector Method (Saaty 1977), Normalization of the Column Sum Method
and Arithmetic Mean of Normalized Columns Method (Saaty 1980), the Direct
Least Squares Method (DLSM) and the Weighted Least Squares Method (WLSM)
(Chu et al. 1979), the Logarithmic Least Squares Method (LLSM) (Crawford and
Williams 1985), the Logarithmic Goal Programming Method (LGPM) (Bryson
1995), Geometric Means Solution (GMS) (Barzilai 1997) and so on. Excellent
review of these methods can be found in Choo and Wedley (2004) and Lin (2007).

In AHP, the calculated priorities are plausible only if the pairwise comparison
matrices pass the consistency test, when the transitivity and reciprocity rules are re-
spected within the pairwise comparison process (Ishizaka and Lusti 2004). However,
the data of a PCM are usually collected and used to assign criteria weights or scores
of alternatives through questionnaire survey, and as the surveyed experts are often
biased in their subjective comparisons, the inconsistent comparisons of preference
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judgment may exist in a PCM. Therefore, the inconsistency issues in AHP have
been widely studied, and a number of approaches and models are proposed and
developed (Saaty 1986, 1987, 1990; Harker and Vargas 1987; Liu 1999; Xu and Wei
1999; Wei and Zhang 2000; Li and Ma 2007; Cao et al. 2008; Iida 2009; Koczkodaj
and Szarek 2010). However, some existing methods are complicated and difficult
to use in the revising process of the inconsistent comparison matrix while some are
difficult to preserve most of the original comparison information since a new matrix
has to be constructed to replace the original comparison matrix (Ergu et al. 2011b).
In addition, most of the methods are based on the priority vectors derived from the
inconsistent matrix. For instance, Harker and Vargas (1987) derived the formula,
@�max=@aij D vi !j � a2

j i vj !i , to identify the most inconsistent entry by examining
(any) one of the largest absolute value in the n(n�1)/2 values fvi!j � a2

j i vj !i g,
i > j . In Saaty (1980, 1994), the matrix B D Œ

ˇ
ˇaij � !i =!j

ˇ
ˇ� of absolute differ-

ences was constructed to identify the most inconsistent element. In the AHP Expert
Choice software, a similar matrix, E D ("ij) D (aij!j/!i), is constructed to identify
the most inconsistent element, where !i and !j are underlying subjective priority
weights belonging to a priority vector ! D (!1, : : : , !n) (Saaty 2003). Two similar
methods are proposed by Xu and Wei (1999) and Cao et al. (2008) to detect the
inconsistencies.

In addition to the inconsistency issue in the AHP, it is difficult for experts to
assign the values to every comparison matrix for a complex decision problem.
Besides, it is sometimes impossible to get complete comparison matrices due to the
limited expertise, time pressure, and preference conflicts (Harker and Vargas 1987;
Forman 1990). On the other hand, the PCM must be complete in order to derive the
final priority vectors. If a PCM is incomplete, the missing entries should be filled
with values that can keep or improve the PCM consistency. Hence, the issues on
how to deal with such incomplete reciprocal or fuzzy PCM with missing entries
have been investigated extensively (Carmone et al. 1997; Alonso et al. 2004, 2008;
Hu and Tsai 2006; Brunelli et al. 2007; Fedrizzi and Giove 2007; Chiclana et al.
2009).

Apart from the PCM and the consistency test, there are several assumptions when
the AHP is applied to make decisions, such as, the independence between higher
level elements and lower level elements, the independence of the elements within
a level, and the hierarchy structure of the decision problem (Saaty 1994; Saaty and
Zoffer 2011). However, in reality, decision makers are often facing complicated
decision problems which can not be structured hierarchically. Furthermore, the
interactions of decision attributes within the same level and the feedbacks between
two different levels are important issues that should be considered during the
decision making process. Therefore, the AHP method does not work accurately
when solving such decision problems (Saaty 1996).

The analytical network process (ANP), as an extensive and complementary
method of the AHP, was introduced and further developed by Saaty (1996, 1999,
2001a, b, 2003, 2004, 2005, 2006, 2008). The ANP method can be used to make
decision problems which cannot be structured hierarchically and doesn’t have the
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inner-independent and outer-independent assumptions. Since its introduction, the
ANP method is gaining popularity and applied to diverse areas. For instance, Lee
and Kim (2000) suggested an improved information system (IS) project selection
method using the ANP within a zero–one goal programming model to solve the IS
project selection problems. Hafeez et al. (2002) provided a structured framework
for determining the key capabilities of a firm using the ANP. Karsak et al. (2003)
employed the ANP to evaluate the interrelationships among customer needs and
product technical requirements (PTRs) while determining the importance levels
of PTRs in the house of quality (HOQ). Niemira and Saaty (2004) developed
an imbalance-crisis turning point model to forecast the likelihood of a financial
crisis based on an ANP framework. Chung et al. (2005) employed the ANP
to select and evaluate different product mixes in a semiconductor fabricator.
Kahraman et al. (2006) used the ANP to obtain the coefficients of the objective
function and proposed a fuzzy optimization model for Quality function deployment
(QFD) planning process using the ANP. Bayazit and Karpak (2007) developed an
ANP based framework to assess the implementation of total quality management
(TQM). Wu (2008) proposed an effective solution based on a combined ANP and
DEMATEL approach to help companies evaluating and selecting their knowledge
management (KM) strategies. Aktar and Ustun (2009) suggested an integrated
approach of Archimedean Goal Programming (AGP) and Analytic Network Process
(ANP) to evaluate the suppliers and determine their periodic shipment allocations
given a number of tangible and intangible criteria. Caballero-Luque et al. (2010)
presented a model based on the ANP to help organization managers to verify if their
website contents are appropriate for satisfying the goals they have established.

In addition to the above fields, the ANP has also widely been used in risk
assessment and decision analysis. For instance, Lu et al. (2007) applied the ANP
to deal with the degree of risk for the main activities of an urban bridge project.
Raisinghani et al. (2007) utilized the ANP to provide insight into optimum-
seeking decision processes by managers and study the “systems with feedback”
where the e-commerce strategy may both dominate and be dominated directly and
indirectly by the business-level strategy. Dagdeviren et al. (2008) employed the
ANP to identify the faulty behavior risk (FBR) which is significant in work system
safety. Besides, Levy and Taji (2007) proposed a Group Analytic Network Process
(GANP) approach to support hazards planning and emergency management under
incomplete information.

In the ANP, similar to the AHP, three issues need to be solved for a pairwise
comparison matrix (PCM): consistency test, inconsistent element(s) identification
and adjustment, and missing values estimation. However, these issues are more
complicated in the ANP than in the AHP since there are more comparison matrices
in the ANP. In addition, although the above reviewed heuristics and approximations
of comparison matrix do not affect the priority order and may achieve consistent
result in AHP, they are not acceptable in the Analytic Network Process (ANP).
In general, there are more pairwise comparison matrices in ANP than AHP, and
all ratio scale priority vectors are columns in supermatrix in ANP (Saaty 1996,
2006; Caballero-Luque et al. 2010). The priority result of ANP changes even if the
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pair-wise comparison matrices are slightly inconsistent (Saaty 1996, 2005; Lee and
Kim 2000; Mikhailov and Singh 2003). Therefore, an inconsistency identification
method that can retain most of the comparison information in the original pair-wise
comparison matrix provided by the experts is a requisite for ANP and AHP.

In summary, the data of PCM both in AHP and ANP usually involve in
consistency test index, inconsistency identification, missing values estimation,
questionnaire design for collecting surveyed data and rank reversal issues. To
process the understudied issues of data in the PCM, Ergu et al. (2011a) proposed
a maximum eigenvalue threshold method, which is mathematically equivalent to
the consistency ratio method as the new consistency index for the AHP/ANP. To
identify the inconsistent elements simply and accurately while preserving most of
the original comparison information in the PCM, an induced bias matrix model
(IBMM), which is only based on the original comparison matrix and independent
to the way of deriving the priority weight vectors, was proposed in Ergu et al.
(2011b). The IBMM is further extended to estimate the missing item scores of the
PCM whilst keep the global consistency in Ergu et al. (2011c), and to optimize
the questionnaire design in Ergu and Kou (2011). Besides, the proposed IBMM is
applied to two real cases in Ergu et al. (2011d, e): task-oriented resource allocation
in cloud computing environment and risk assessment and decision analysis for
improving the consistency ratios of the PCMs. Finally, another form of IBMM, the
induced arithmetic average bias matrix (IAABM), is further introduced in Ergu and
Kou (2012), which are simpler and easier than existing methods.

The remaining parts of this book are organized as follows: Chap. 2 describes the
maximum eigenvalue threshold method for AHP/ANP. The basics of the IBMM
for processing the data of the PCM in AHP/ANP are presented in detail in the
Chap. 3. The IBMM is extended to estimate the missing values in Chap. 4. Chapter 5
introduces the IBMM for optimizing the questionnaire design and estimating the
missing items scores. Chapter 6 briefly describes the process of sensitivity analysis
of rank reversal by IBMM. Two real world applications of IBMM are studied in
Chap. 7. Chapter 8 briefly presents the IAABM, an extension of IBMM.
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Chapter 2
A New Consistency Test Index for the Data
in the AHP/ANP

The consistency test is one of the critical components both in AHP and ANP.
Currently, the consistency ratio (CR) proposed by Saaty is popularly used to test the
consistencies of the pairwise comparison matrices. However, when the number of
comparison matrices increases, the consistency test of comparison matrices both in
the AHP and ANP becomes complicated. In an attempt to simplify the consistency
test, Ergu et al. (2011a) proposed a maximum eigenvalue threshold as the new
consistency index for the data in the AHP and ANP, which is mathematically
equivalent to the CR method. In addition, a block diagonal matrix is introduced for
the comparison matrices in the AHP/ANP to conduct consistency tests simultane-
ously. In this Chapter, the proposed new consistency test index is comprehensively
described.

2.1 Basics of the AHP/ANP

2.1.1 The Positive Reciprocal Pairwise Comparison Matrix

The pairwise comparison technique, originally proposed by Thurstone (1927)
is a well-established technique and widely used in analytical hierarchy process
(AHP)/analytical network process (ANP) (Saaty 1980, 1994, 2008) to pairwise
compare two attributes or alternatives with respect to a given criterion. All pair-wise
comparisons are then arranged in a matrix A D .aij /n�n, and popularly called pair-
wise comparison matrix (PCM) or positive reciprocal matrix in literature, which has
the following definitions and notations.

G. Kou et al., Data Processing for the AHP/ANP, Quantitative Management 1,
DOI 10.1007/978-3-642-29213-2 2, © Springer-Verlag Berlin Heidelberg 2013
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Table 2.1 The average random index

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49

A D

2

6
6
6
4

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann

3

7
7
7
5

Definition 2.1. A comparison matrix A is positive reciprocal matrix if aii D 1,
aij > 0 and aij D 1

aj i
for all positive integer i and j .

Definition 2.2. A positive reciprocal matrix is perfectly consistent if aikakj D aij

for all i , j and k.

Definition 2.3. A positive reciprocal matrix is approximately consistent if aikakj �
aij for all i , j and k, where ‘�’ denotes approximately or close to.

Definition 2.4. A positive reciprocal matrix is transitive if A > C can be derived
from A > B and B > C logically.

Definition 2.5. The pairwise comparison matrix can pass the consistency test, if the
Consistency Ratio CR D CI

RI < 0:1, where the Consistency Index CI D �max�n
n�1

, RI
is the average Random Index based on Matrix Size as shown in Table 2.1, �max is
the maximum eigenvalue of matrix A, and n is the order of matrix A (Saaty 1991).

The pairwise comparison matrix (PCM) is composed of elements expressed
on a numerical scale and the values of elements are given by decision makers
based on their experiences and expertise in order to transform the qualitative
attribute or criteria into measurable numbers. Saaty (1978, 2001b) suggested a
1–9 fundamental scale to compare two elements with respect to the criteria, and
n(n�1)/2 comparisons are needed to complete a comparison matrix.

Once a set of pairwise comparison matrices are constructed for a decision
problem, the priority weights of alternatives need to be derived from these ma-
trices, and then a decision can be made in terms of the ranking order of the
alternatives. Currently, there are more than 20 different methods that can be
used to derive the priority weights of alternatives from a PCM, including the
Normalization of the Column Sum Method and Arithmetic Mean of Normalized
Columns Method (Saaty 1980), the Eigenvector Method (EM) (Saaty 2003), the
Direct Least Squares Method (DLSM) and the Weighted Least Squares Method
(WLSM) (Chu et al. 1979), the Logarithmic Least Squares Method (LLSM)
(Crawford and Williams 1985)/Geometric Means Solution (Barzilai 1997), and the
Logarithmic Goal Programming Method (GPM) (Bryson 1995) etc. Among these
methods, the Eigenvector Method (EM) is used in AHP Expert Choice Software.
In addition, the pairwise comparison matrix is the critical component in AHP/ANP,
therefore, the basics of the AHP/ANP are briefly described below.
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Goal

Criteria 1 Criteria 2 Criteria 3 … Criteria n

S1 S2 … Sn

Fig. 2.1 The typical hierarchy structure with three levels in the AHP

2.1.2 Basics of the AHP

Analytic Hierarchy Process (AHP), initially proposed by Saaty in the 1970s (Saaty
1979, 1980), is one of the widely used multi-criteria decision making (MCDM)
methods, and has been successfully applied to many practical decision making
problems. In the AHP, a complicated decision problem can be decomposed into
several hierarchies according to the related attributes or criteria. The typical AHP
hierarchy structure with three levels is shown in Fig. 2.1.

When AHP is used to make a decision, first, a decision problem should be
determined, then we need to decompose the decision into hierarchical structure
showing the relationships of the goal, criteria and alternatives from the top to the
bottom, corresponding to the first level, second level and third levels as shown in
Fig. 2.1. The typical steps of AHP include the following five steps:

1. Define the problem and decompose the problem.
2. Construct a set of pairwise comparison matrices.
3. Calculate eigenvalues and eigenvectors by Eigenvector Method (EM).
4. Test the consistency of all comparison matrices.
5. Aggregate the final priorities of alternatives to make decision.

In the first step, a decision problem should be defined, then structure the
decision hierarchically by breaking down the decision problem into a hierarchy
of interrelated decision elements, which usually includes three hierarchy levels:
objective level, criteria level and alternatives level. In the AHP, it is assumed that
the relation of higher level elements from lower level elements is independent and
the elements within a level are also assumed to be independent.

In the second step, elements within same level are pairwise compared with
respect to a given criterion, which is located at higher level. The intangible
attributes are measured by a scale of absolute judgments that represents how much
one element more dominates another with respect to a given attribute. In AHP,
Saaty (1978) proposed a 9-point integer scale as shown in Table 2.2 to quantify
the intangible attributes or criteria into measurable numerical numbers. Then all
pairwise comparisons are arranged in a pairwise comparison matrix A, as explained
in Sect. 2.1.1.



14 2 A New Consistency Test Index for the Data in the AHP/ANP

Table 2.2 The Saaty’s 9-points rating scale

Intensity of
importance Definition Explanation

1 Equal importance Two activities contribute equally to
the objective

3 Weak importance of one over another Experience and judgment slightly
favor one activity over another

5 Essential or strong importance Experience and judgment strongly
favor one activity over another

7 Demonstrated importance An activity is strongly favored and
its dominance demonstrated in
practice

9 Absolute importance The evidence favoring one activity
over another is of the highest
possible order of affirmation

2,4,6,8 Intermediate values between the two
adjacent judgments

When compromise is needed

Reciprocals of
above nonzero

If activity i has one of the above nonzero numbers assigned to it when
compared with activity j, then j has the reciprocal value when
compared with i.

In the third step, as stated previously, there are more than 20 prioritization
methods that can be used to calculate the priority vectors, however, the Eigenvector
Method (EM) introduced by Saaty is the most popular one, which has been
embedded in AHP Expert Choice Software and ANP SuperDecision Software.

In the fourth step, the consistency of all comparison matrices should be tested
before they are used to make decision. The popular method for testing consistency
is consistency ratio (CR) proposed by Saaty, details will be given in Sect. 2.2.

In the final step, the priority vectors calculated from comparison matrices in
each level are used to weigh the priorities in the next level. Repeat this process
for every element, then synthesize all priorities of criteria and alternatives until the
final priorities of the alternatives in the bottom level are obtained. For more details
of AHP, the reader is referred to Saaty (1980, 1990, 1991, 1994).

2.1.3 Basics of the ANP

As reviewed previously, AHP has two assumptions (Saaty 1994): the independence
of higher level elements from lower level elements and the independence of the
elements within a level. These two assumptions simplify the calculations when ana-
lyzing multiple criteria decision making (MCDM) with quantitative and qualitative
attributes. However, many decision problems can not be structured hierarchically
due to the complexity and dynamics nature of decision problems. Therefore, the
interaction of higher level elements with lower level elements and their dependence
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Goal

P1 P2 P3 … Pn

C1

e11 e12 … e1n1

C2

e21 e22 … e2n2

C3

e31 e32 … e3n3

C4

e41 e42 … e4n4

Alternatives

A1 A2 … An

Outer - dependence

Inner-dependence loop

Control level

Network level

Fig. 2.2 The structure of ANP

should not be neglected. To address these inherent weaknesses in AHP, Saaty (1996)
proposed the ANP for problems which cannot be structured hierarchically. The
ANP, a generalization of the AHP, is capable of tackling sophisticated issue of
dependence and feedback in a decision system, and provides a general framework
to deal with decisions without making the above assumptions.

The ANP process has two parts, as shown in Fig. 2.2. The first part is a control
hierarchy or network of criteria and subcriteria that controls the interactions. The
second part consists of a network of influences among the elements and clusters
(Saaty 1996). In ANP, there are outer-dependence and/or inner-dependence between
the elements and clusters. The priority vectors in ANP are derived from pairwise
comparison matrices and supermatrix is composed of elements which could also
be matrices of column priorities, as shown in Fig. 2.3. Each of these supermatrices
is weighed by the priority of its control criterion and the results are synthesized
through addition for all the control criteria (Saaty 2005).

The main steps of the ANP include: (1) identify the elements and clusters;
(2) create the model; (3) determine the interdependencies; (4) construct pairwise
comparison matrices between the clusters and elements; (5) build supermatrix and
solve the limit supermatrix. For more details of ANP, the reader is referred to Saaty
(1996, 1999, 2001a, 2008).
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Fig. 2.3 The supermatrix of a network

2.2 Consistency Test Issue in the AHP/ANP

2.2.1 Analysis of the Consistency Ratio (CR) Method

During the process of making decisions, there will be inconsistency issue occurring
when comparing different attributes or criteria as the decision problems are compli-
cated in nature. For instance, suppose attribute A is 2 times important as attribute
B, and attribute B is 3 times important as attribute C, however, attribute A is only 4
times important as attribute C instead of 6 times. Likewise, the values of A is bigger
than B, B is bigger than C, however C is bigger than A, namely, A > B; B > C; but
C > A. Both of these issues are called inconsistency (Saaty 1991). Therefore, the
consistency test is necessary for comparison matrix before the priority vectors of
the comparison matrix can be calculated. If the consistency test for the comparison
matrix is failed, the inconsistent elements in the comparison matrix has to be revised,
otherwise, the result of decision analysis process is meaningless.
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The most widely used consistency index is the consistency ratio (CR) (Saaty
1991), that is,

CR D CI

RI
< 0:1 (2.1)

where CI D �max�n
n�1

is the consistency index, RI is the average random index based
on Matrix Size shown in Table 2.1, �max is the maximum eigenvalue of matrix A,
and n is the order of matrix A.

According to rule of thumb, the comparison matrix is consistent only if the value
of CR is less than 0.1. The consistency test includes the following four steps:

Step 1: Calculate the �max of one comparison matrix.
Step 2: Calculate the value of CI using the formula CI D �max�n

n�1
.

Step 3: Calculate the CR using the formula CR D CI
RI and Table 2.1.

Step 4: Compare the value of CR with the consistency threshold 0.1 to judge
whether the comparison is consistent.

There is a major shortcoming when using CR as the consistency index for
comparison matrices, as above steps has to be calculated repeatedly for each
comparison matrix to test the consistency.

2.2.2 The Issues of Consistency Test in the AHP/ANP

The AHP is the special case of ANP while ANP is an extensive and complementary
method of the AHP. Therefore, in the following, we mainly focus on the consistency
issue in the ANP. Similar to the AHP, the consistency of each comparison matrices
in ANP needs to be tested using the CR method. If the comparison matrices pass
the consistency test, then the priorities derived from the comparison matrices are
added as parts of the columns of the supermatrix of a network (Saaty 2008), which
is shown in Fig. 2.3. Otherwise, this comparison matrix has to be revised by experts.

Therefore, the consistency test will be much more complicated in the ANP than
in the AHP since, in the ANP, there exist more comparison matrices derived from
the supermatrix of a network as shown in Fig. 2.3.

In Fig. 2.3, each judgment indicates the dominance of an element in the column
on the left over an element in the row on the top. Assume Wij ¤ 0 for all
1 � i; j � N , both inner-clusters and outer-clusters have interactions. In above
supermatrix, there are two kinds of comparison matrices in the ANP, the inner-
clusters comparison matrices and the outer-clusters comparison matrices. From the
C1 cluster to the CN cluster, the number of the comparison matrices in the inner-
cluster is n1 with order n1, n2 with order n2, : : : , and nN with order nN respectively.
The number of the comparison matrices in the outer-cluster includes: .N � 1/ n1

with orders n2, n3, : : : , nN ; .N � 1/ n2 with orders n1, n3, : : : , nN ; .N � 1/ n3 with
orders n1, n2, n4, : : : , nN ; : : : ; .N � 1/ nN with orders n1, n2, n3, : : : , nN �1.
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Inner-cluster comparison matrices
in the ANP

Quantity Matrices order

n1 n1 � n1

n2 n2 � n2

:
:
:

:
:
:

nN nN � nN

The total number of Inner-cluster comparison matrices is n1 C n2 C � � � C nN .

Outer-cluster comparison matrices in the ANP

Quantity Matrices order

.N � 1/ n1 n2 � n2, n3 � n3, : : : , nN � nN

.N � 1/ n2 n1 � n1, n3 � n3, : : : , nN � nN

:
:
:

:
:
:

.N � 1/ nN n1 � n1, n3 � n3, : : : , nN �1 � nN �1

The total number of Outer-cluster comparison matrices is .N � 1/ .n1 C n2 C
� � � C nN /.

Therefore, the total number of all the comparison matrices in the ANP is N.n1 C
n2 C � � � C nN /. Hence, the CR method has to be calculated the CRs N .n1 C n2 C
� � � C nN / times for all comparison matrices.

To sum up:

1. The consistency ratio is calculated repeatedly for each comparison matrix in the
CR method.

2. The CRs of the comparison matrices in the ANP need to be calculated 4N.n1 C
n2 C� � �CnN / times since the total number of the comparison matrices is N.n1 C
n2 C � � � C nN / from C1 cluster to CN cluster which contain n1 elements to nN

elements respectively.

Therefore, the traditional CR method is very complicated in practice, especially
for the ANP. In the following, a new consistency index, called Maximum eigenvalue
threshold, is proposed to test the consistency of the comparison matrices in
AHP/ANP. Details are followed next.

2.3 The New Consistency Index: Maximum Eigenvalue
Threshold for the AHP/ANP

In the formula CR D .�max � n/ = .n � 1/ RI, the CR is only dominated by the �max

for the comparison matrices in the same order, which are commonly occurred in the
ANP. Therefore, we can derive the following corollary.
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Table 2.3 The threshold �n
max thrd of the maximum eigenvalue and the corresponding RI

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49
�n

max thrd 1 2 3.104 4.267 5.444 6.781 7.81 8.98 10.16 11.341

Corollary 2.1. The inequality CR < 0:1 is mathematically equivalent to the
inequality �max < �n

max threshold or ��max < 0, where �max denotes the maximum
eigenvalue of the comparison matrix with order n, �n

max threshold represents the
corresponding maximum eigenvalue threshold with order n, which is listed in
Table 2.3, ��max denotes the bias between the maximum eigenvalue and its
corresponding threshold. The proofs can be done as the following:

Proof. If

CR D CI

RI
D �max � n

.n � 1/ RI
< 0:1 (2.2)

That is

CR D CI

RI
< 0:1 , CI < 0:1RI (2.3)

, �max � n

n � 1
< 0:1RI (2.4)

, �max � n < 0:1RI.n � 1/ (2.5)

, �max < 0:1RI.n � 1/ C n (2.6)

where the symbol “,” denotes equivalence. Let the right value be the maximum
eigenvalue threshold �n

max threshold (in short �n
max thrd), namely,

�n
max thrd D 0:1RI.n � 1/ C n (2.7)

Therefore

CR < 0:1 , �max < �n
max thrd (2.8)

, r�max D �max � �n
max thrd < 0 (2.9)

�
Since the CR method is mathematically equivalent to the maximum eigenvalue

threshold method, the corresponding maximum eigenvalue threshold �n
max thrd of the

comparison matrices with order n can be easily calculated using the formula (2.7)
and the corresponding value of RI in Table 2.1. The results are listed in Table 2.3.
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Fig. 2.4 The calculation processes of the CR method

From the Table 2.3, once the maximum eigenvalue �max of a comparison matrix
is calculated, the consistency of this comparison matrix can be tested by comparing
the �maxwith the maximum eigenvalue threshold �n

max thrd without calculating the
CI and CR. For instance, assume �max D 5:2 for a comparison matrix of order 5, the
comparison matrix is consistent because the �max D 5:2 < �5

max thrd D 5:444, which
is equivalent to CR D 0:045 < 0:1. Therefore, the maximum eigenvalue threshold
�n

max thrd can be used as a new consistency index for the ANP to test whether a
comparison matrix is consistent. The specific principle of consistency test can be
defined as follows:

Consistency test principle: If �i
max < �n

max thrd , that is, ��i
max < 0, the i th

comparison matrix passes the consistency test. If �i
max � �n

max thrd, that is, ��i
max �

0, the i th comparison matrix fails the consistency test. The i th comparison matrix
should be revised.

2.3.1 The Advantages of Maximum Eigenvalue Threshold
for AHP/ANP

The CR method is the most widely used consistency test method in the AHP/ANP.
Although it is proved that the CR method developed by Saaty is mathematically
equivalent to the �n

max thrd method, that is, CR D CI
RI < 0:1 is equivalent to

�n
max < �n

max thrd or ��n
max < 0, the maximum threshold �n

max thrd method is easier
to implement than the CR method.

The principles of consistency test of the CR method and the �n
max thrd method are

shown in inequalities (2.10) and (2.11) respectively:

CR D CI

RI
D �max � n

.n � 1/ RI
< 0:1 (2.10)

�max < �n
max thrd Or ��n

max < 0 (2.11)

The detailed processes of the CR method and the �n
max thrd method are shown in

the Figs. 2.4 and 2.5.
Clearly, compared to the CR method, in �n

max thrd method, there is no need to
calculate the two middle steps as shown in Fig. 2.4, which saves 2N.n1 Cn2 C� � �C
nN / times in calculation. Therefore, the advantages of the �n

max thrd method can be
summarized into two aspects: efficient and easier to be implemented.
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Fig. 2.5 The calculation processes of the �n
max thrd method

Goal

Criteria 1 Criteria 2 Criteria 3 Criteria 4

S1 S2 S3

Fig. 2.6 The typical
hierarchy structure with three
levels in the AHP

2.4 The Processes of Data Consistency Test in AHP/ANP

The principle of consistency test by maximum eigenvalue threshold method has
been proposed in Sect. 2.3. For a pairwise comparison matrix (PCM), only two
steps are needed to test whether the PCM passes the consistency test: (1) calculate
the maximum eigenvalue �max and (2) compare it with the maximum eigenvalue
threshold as shown in Table 2.3. If �max < �max thrd or ��max < 0, then the PCM
passes the consistency test, otherwise, the inconsistent elements should be identified
and adjusted until it satisfies the consistency test.

To further simplify the processes of the consistency test in the AHP/ANP, in
Ergu et al. (2011d), the block diagonal matrix, based on the comparison matrices in
the same level or different levels, was proposed to test the consistencies of several
comparison matrices simultaneously. Details will be presented below. As the AHP
is a special case in the ANP, without losing generality, two typical cases of AHP
structures with three levels and four levels respectively are used to illustrate the
block diagonal matrix and the consistency test methodologies.

Case-1: the block diagonal matrix is constructed for a typical AHP model with three
levels as shown in Fig. 2.6.

In this hierarchy structure, there are five comparison matrices: One with order
four for the criteria with respect to the goal in the first level, denoted as A,
and four with order three for the three alternatives with respect to the four
criteria in the second level, denoted as C1, C 2, C 3 and C 4. The consistency
test for the comparison matrix A can be tested independently, while the other
four comparison matrices with the same order can be tested simultaneously. The
consistency test includes three steps:
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Goal

Criteria 1 Criteria 2 Criteria 4Criteria 3

Sub-Criteria 1 Sub-Criteria 1 Sub-Criteria 1 Sub-Criteria 1 Sub-Criteria 1

A B C

level
st

1

level
nd

2

levelrd3

level
th

4

Fig. 2.7 The typical hierarchy structure with four levels in the AHP

Step 1: Construct the block diagonal matrix (B in short) using the five comparison
matrices as the entries in the main diagonal:

B D

0

B
B
B
B
B
@

A

C1

C 2

C 3

C 4

1

C
C
C
C
C
A

(2.12)

Step 2: Calculate the eigenvalues in the block diagonal matrix B. According to the
notations of the block diagonal matrix, the maximum eigenvalues in the block
diagonal matrix are the corresponding maximum eigenvalues of the comparison
matrices A, C1, C 2, C 3 and C 4 respectively, which are denoted as �i

max

.i D 0; 1; 2; 3; 4/.
Step 3: Calculate the maximum eigenvalue bias ��i

max .i D 0; 1; 2; 3; 4/ using the
following formulas, and judge its consistency using the corresponding condition
mentioned above.

��0
max D �0

max � �4
max thrd (2.13)

��i
max D �

�1
max �2

max �3
max �4

max

� � �3
max thrd (2.14)

If ��i
max < 0 .i D 0; 1; 2; 3; 4/, then the i th comparison matrix passes the

consistency test, otherwise, it fails the consistency test. For instance, assume
��2

max < 0 and ��4
max > 0, the comparison matrix C 2 passes the consistency

test and is consistent while the comparison matrix C 4 failed the consistency test,
and its elements should be revised.

Case-2: the block diagonal matrix is constructed for a typical AHP structure with
four levels as shown in Fig. 2.7.
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In this four-level structure, there are ten pairwise comparison matrices.

In the 1st level: One matrix with order four with respect to the Goal, denoted
as G.

In the 2nd level: Four comparison matrices with order five for the five Sub-
Criteria with respect to all four criteria, denoted as C1, C 2, C 3 and C 4.

In the 3rd level: Five comparison matrices for the three Alternatives with respect
to all the five Sub-Criteria, denoted as S1, S2, S3, S4 and S5 respectively.

After calculating each �i
max .i D 0; 1; 2; � � � ; 9/ for the ten comparison matrices,

one has to calculate the CR ten times for ten comparison matrices before
judging whether the CR is less than 0.1. The complicities of CR calculation
will be increased with the increase of the comparison matrices in the ANP.
However, if the proposed maximum eigenvalue threshold index is used to test
each consistency issue for ten comparison matrices, all the inconsistencies can be
tested by using the maximum eigenvalue threshold method, �i

max < �n
max thrd. For

instance, comparing the �0
max with the threshold �4

lim max for the first comparison
matrix in order four, comparing the �i

max .i D 1; � � � ; 4/ with the threshold
�5

max thrd for the second four comparison matrices in order five, and comparing
the �i

max .i D 5; � � � ; 9/ with the threshold �3
max thrd for the last five comparison

matrices in order three.

In above case, there are two basic principles of consistency test using the
maximum eigenvalues, as shown below.

Basic Principle 1. Level-by-level test – Test the consistencies of the comparison
matrices for each level. That is, test the consistencies of the comparison matrices
with the same order in the same level one by one.

The processes of this method include the following steps.

Step 1: Construct the corresponding block diagonal matrix denoted as, B1, B2 and
B3 for the comparison matrices in each level using the corresponding comparison
matrices as the entries in the main diagonals:

B1 D G (2.15)

B2 D

0

B
B
@

C1

C 2

C 3

C 4

1

C
C
A

(2.16)

B3 D

0

B
B
B
B
B
@

S1

S2

S3

S4

S5

1

C
C
C
C
C
A

(2.17)
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Note: If the order of the block diagonal matrix is acceptable, then the block
diagonal matrix B can be constructed by all comparison matrices in the whole
level as the entries in the main diagonal to calculate the eigenvalues of all
comparison matrices simultaneously.

B D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

G

C1

C 2

C 3

C 4

S1

S2

S3

S4

S5

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(2.18)

Step 2: Calculate the eigenvalues in the block diagonal matrix B1, B2 and B3

respectively. Or directly calculate the eigenvalues of the block diagonal matrix B.
According to the notations of the block diagonal matrix, the maximum eigenval-
ues in the block diagonal matrix are the corresponding maximum eigenvalues
of the comparison matrices G, C1, C 2, C 3, C 4, S1, S2, S3, S4 and S5

respectively, denoted as �i
max.i D 0; 1; 2; 3; 4; 5; 6; 7; 8; 9/.

Step 3: Calculate the maximum eigenvalue biases for the comparison matrices for
each level using the following formulas, and judge its consistency using the
corresponding condition mentioned above, that is, ��0

max for the first level,
��i

max .i D 1; 2; 3; 4/ for the second level, ��i
max .i D 5; 6; 7; 8; 9/ for the

third level.

The 1st level W ��0
max D �0

max � �4
max thrd (2.19)

The 2nd level W ��i
max D �

�1
max �2

max �3
max �4

max

� � �5
max thrd (2.20)

The 3rd level W ��i
max D �

�5
max �6

max �7
max �8

max �9
max

� � �3
max thrd (2.21)

If ��i
max < 0 .i D 0; 1; 2; 3; 4; 5; 6; 7; 8; 9/, then the i th comparison matrix

passes the consistency test, otherwise, it fails the consistency test. The specific
processes of consistency test are the same processes illustrated previously.

Basic Principle 2. Whole-level test – Test the whole consistencies of the compari-
son matrices simultaneously.
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The processes of this method include:

Step 1: Construct the block diagonal matrix B using all the comparison matrices as
the entries in the main diagonals at one time (simultaneously)

B D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

G

C1

C 2

C 3

C 4

S1

S2

S3

S4

S5

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(2.22)

Step 2: Calculate the eigenvalues of the block diagonal matrix B. Then the
maximum eigenvalues of the comparison matrices G, C1, C 2, C 3, C 4, S1, S2,
S3, S4 and S5 can be calculated, denoted as �i

max .i D 0; 1; 2; 3; 4; 5; 6; 7; 8; 9/

respectively.
Step 3: Calculate the maximum eigenvalue biases for all comparison matrices

using the following formula, and judge its consistency using the corresponding
condition mentioned above.

��i
max D �

�0
max �1

max �2
max �3

max �4
max �5

max �6
max �7

max �8
max �9

max

�

� �

�4
max thrd �5

max thrd �5
max thrd �5

max thrd �5
max thrd �5

max thrd �3
max thrd �3

max thrd �3
max thrd �3

max thrd

�

(2.23)

Likewise, if ��i
max < 0 .i D 0; 1; 2; 3; 4; 5; 6; 7; 8; 9/, then the i th comparison

matrix passes the consistency test, otherwise, it fails the consistency test. The
specific processes of consistency test are the same processes illustrated previously.

2.5 Illustrative Example

For simplicity, an example selecting the best computer system firstly introduced by
Triantaphyllou and Mann (1995), which has the typical hierarchy structure as shown
in Fig. 2.6, is used to illustrate Basic Principle 1 – Level-by-level test method. This
example will again be used to illustrate Basic Principle 2 – Whole-level test method
in Example 7.3. The five comparison matrices provided by Triantaphyllou and Mann
are denoted as A, C1, C2, C3, and C4 respectively. Follow above three steps of Basic
Principle 1 to test the consistencies of five matrices:
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Step 1: Construct the block diagonal matrix B showed below using the matrices A,
C1, C2, C3 and C4.

Columns1through11 Columns12through16

1:0000 5:0000 3:0000 7:0000 0 0 0 0 0 0 0 0 0 0 0 0

0:2000 1:0000 0:3333 5:0000 0 0 0 0 0 0 0 0 0 0 0 0

0:3333 3:0000 1:0000 6:0000 0 0 0 0 0 0 0 0 0 0 0 0

0:1429 0:2000 0:1667 1:0000 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1:0000 6:0000 8:0000 0 0 0 0 0 0 0 0 0

0 0 0 0 0:1667 1:0000 4:0000 0 0 0 0 0 0 0 0 0

0 0 0 0 0:1250 0:2500 1:0000 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1:0000 7:0000 0:2000 0 0 0 0 0 0

0 0 0 0 0 0 0 0:1429 1:0000 0:1250 0 0 0 0 0 0

0 0 0 0 0 0 0 5:0000 8:0000 1:0000 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1:0000 8:0000 6:0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0:1250 1:0000 0:2500 0 0 0

0 0 0 0 0 0 0 0 0 0 0:1667 4:0000 1:0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1:0000 5:0000 4:0000

0 0 0 0 0 0 0 0 0 0 0 0 0 0:2000 1:0000 0:3333

0 0 0 0 0 0 0 0 0 0 0 0 0 0:2500 3:0000 1:0000

Step 2: Calculate the eigenvalue of block diagonal matrix B, and obtain the
maximum eigenvalues of the corresponding block diagonal sub-matrix A, C1,
C2, C3 and C4. That is:

�0
max D 4:2365; �1

max D 3:1356; �2
max D 3:2470; �3

max D 3:1356; �4
max D 3:0858

Step 3: Test the consistency using the maximum eigenvalue threshold method. That
is:

��0
max D �0

max � �4
max thrd D 4:2365 � 4:267 D �0:0305 < 0

The result shows that the comparison matrix A is consistent.

��i
max D �

�1
max; �2

max; �3
max; �4

max

� � �3
max thrd

D .3:1356; 3:2470; 3:1356; 3:0858/ � 3:104

D . 0:0316; 0:143; 0:0316; �0:0182/

Obviously, only ��4
max < 0, which means only the comparison matrix C 4 is

consistent, and others are inconsistent.
When the comparison matrix failed to the consistency test, there are three ways

can be done (Saaty 2008): (1) Identify the most inconsistent judgment in the
matrix, (2) Determine the range of values to which that judgment can be changed
corresponding to which the inconsistency would be improved, (3) Ask the judge to
change her/his judgment to be an acceptable value in that range.

Then, how to identify the most inconsistent judgment in the inconsistent matrix?
There are many methods for improving the consistency ratio in literature. In Chap. 3,
an induced bias matrix model (IBMM) is introduced to simply identify and adjust
the most inconsistent elements in the inconsistent comparison matrix.

http://dx.doi.org/10.1007/978-3-642-29213-2_3
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Chapter 3
IBMM for Inconsistent Data Identification
and Adjustment in the AHP/ANP

As stated previously, the inconsistent elements should be identified if the pairwise
comparison matrix (PCM) failed to the consistency test, therefore, the methods
for identifying and adjusting the inconsistent elements in the PCM have been
extensively studied since the AHP/ANP were developed by Saaty. However, existing
methods are either too complicated to be applied in the revising process of the
inconsistent comparison matrix or are difficult to preserve most of the original
comparison information due to the use of a new pairwise comparison matrix.
Therefore, Ergu et al. (2011b) developed a simple method for improving the
consistency ratio of the pairwise comparison matrix in ANP, namely, an induced
bias matrix (IBM) was developed to identify and adjust the inconsistent data in
the ANP/AHP. The proposed method was further extended to estimate the missing
item scores, optimize the questionnaire design and analyze the risk in decision
making as well as task scheduling and resource allocation (Ergu et al. 2011c, 2011d,
2011e; Ergu and Kou 2011). To make the proposed model more comprehensive and
robust, Ergu et al. (2011f) integrated the fundamental theorems and corollaries into
one model, the induced bias matrix model (IBMM), and the related theorems and
corollaries were also proved mathematically in Ergu et al. (2011b, 2011c). In this
Chapter, all theorems and corollaries related to IBMM and their proofs are discussed
systematically in order to understand the proposed IBMM explicitly.

3.1 The Theorems of Induced Bias Matrix Model (IBMM)

To efficiently identify the inconsistent elements and preserve most of the original
pairwise comparison information, an induced bias matrix (IBM), which is only
based on the original PCM, was proposed in Ergu et al. (2011b). In addition, the
following Theorem 3.1 was developed as the theorem of inconsistency identification
method and Corollary 3.1 and 3.2 were developed based on this theorem. The
Corollary 3.1 was proposed to estimate the uncertain or missing values in a PCM

G. Kou et al., Data Processing for the AHP/ANP, Quantitative Management 1,
DOI 10.1007/978-3-642-29213-2 3, © Springer-Verlag Berlin Heidelberg 2013
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and proved mathematically in Ergu et al. (2011c). The Corollary 3.2 shows that
the farthest value should be identified as the inconsistent element from the induced
bias matrix (IBM). Besides, the Corollary 3.3 was further proposed to analyze the
elements in the main diagonal of the IBM in Ergu et al. (2011c). All the theorem
and corollaries are presented below.

Theorem 3.1. The induced bias matrix C D AA � nA should be a zero matrix if
comparison matrix A is perfectly consistent.

Corollary 3.1. The induced bias matrix C D AA � nA should be as close as
possible to zero matrix if comparison matrix A is approximately consistent.

Corollary 3.2. There must be some inconsistent elements in induced bias matrix C

deviating far away from zero if the pairwise matrix is inconsistent.

Corollary 3.3. Despite that the comparison matrix A is consistent or not, all entries
in the main diagonal of the induced bias matrix C D AA � nA should be zeroes
giving that the comparison matrix A is satisfied with the reciprocal condition.

The above mentioned theorem and corollaries can be integrated into one
model, an induced bias matrix model (IBMM), which includes the following three
theorems.

The Theorems of the Induced Bias Matrix Model (IBMM):

Theorem 3.2. The induced bias matrix C D AA � nA should be equal (or close)
to a zero matrix if comparison matrix A is perfectly (or approximately) consistent.
That is

C D AA � nA

� D 0 if aikakj D aij

� 0 if aikakj � aij

where A is the original PCM while aij represents the values of PCM. The “n”
denotes the order of PCM.

Notes:

1. where A can be replaced with the block diagonal matrix consisting of several
reciprocal pairwise comparison matrices to identify the inconsistent elements
simultaneously.

2. where A can be replaced with the revised ‘complete’ PCM through
replacing the missing values in the incomplete PCM with unknown variables
x; 1=xIy; 1=yIz; 1=z etc: to estimate the missing or uncertain values.

Theorem 3.3. There must be some inconsistent elements in the induced bias matrix
(IBM) C deviating far away from zero if the pairwise matrix is inconsistent.
Especially, any row or column of matrix C contains at least one positive element.
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Theorem 3.4. All entries in the main diagonal of the induced bias matrix (IBM)
C D AA � nA should be zeroes whether matrix A is consistent or not as long as
the comparison matrix A satisfies the reciprocal condition.

3.1.1 The Theoretical Proofs of IBMM

In the following, the above three theorems of induced bias matrix method are proved
mathematically and demonstrated using some concrete illustrative examples.

Theorem 3.2. The induced bias matrix C D AA � nA should be equal (or close)
to a zero matrix if comparison matrix A is perfectly (or approximately) consistent.
That is

C D AA � nA

( D 0 if aikakj D aij

� 0 if aikakj � aij

(3.1)

where A is the original PCM while aij represents the values of PCM. The “n”
denotes the order of PCM.

Proof. Let A be a n � n pair-wise matrix (n rows, n columns), and B also be a
n � n matrix. Multiply A to B , then the product C is also a matrix with n rows and
n columns, that is,

Cn�n D An�nBn�n (3.2)

From the theorem of matrix multiplication, we have:

cij D
nX

kD1

aik � bkj (3.3)

where cij represents the element in the i th row and j th column of matrix C.
Likewise, multiply A to A, the product B becomes:

Bn�n D An�nAn�n (3.4)

Applying formula (3.2) and (3.3) to formula (3.4), obviously we get

bij D
nX

kD1

aik � akj (3.5)

where bij denotes the element with i th row and j th column in matrix B .
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If the reciprocal pairwise comparison matrix A is perfectly consistent, then there
is aikakj D aij for all i , j and k. That is

aikakj D wi

wk

� wk

wj

D wi

wj

D aij (3.6)

where wi , wj , and wk denote the weigh vector of attributes ai ; aj and ak respec-
tively. Applying formula (3.6) to formula (3.5), then we have:

bij D
nX

kD1

aik � akj D naij (3.7)

Therefore all elements of the induced bias matrix C are equal to zero and the
induced bias matrix C is a zero matrix.

C D AA � nA D .naij /n�n � n
�

aij

�

n�n
D .0/n�n (3.8)

Likewise, if pairwise comparison matrix (PCM hereinafter) A is approximately
consistent, then there is aikakj � aij for all i , j and k, the above two equations
become:

bij D
nX

kD1

aik � akj � naij (3.9)

Then the formula (3.8) becomes:

C D AA � nA � .naij /n�n � n
�

aij

�

n�n
D .0/n�n (3.10)

Therefore most of the entries in the induced bias matrix C are close to zero and
the induced bias matrix C is also close to a zero matrix if PCM is approximately
consistent. �

In order to demonstrate how the theorem works in our inconsistency identifica-
tion method, a 3�3 pairwise matrix (3 rows, 3 columns) is introduced as an example,
and the processes of matrix multiplication are exhibited below. Let A D .aij / be a
3 � 3 pairwise matrix:

A D
0

@

a11 a12 a13

a21 a22 a23

a31 a32 a33

1

A (3.11)



3.1 The Theorems of Induced Bias Matrix Model (IBMM) 33

Then B D A � A D
0

@

a11 a12 a13

a21 a22 a23

a31 a32 a33

1

A �
0

@

a11 a12 a13

a21 a22 a23

a31 a32 a33

1

A

D
0

@

a11 � a11 C a12 � a21 C a13 � a31 a11 � a12 C a12 � a22

a21 � a11 C a22 � a21 C a23 � a31 a21 � a12 C a22 � a22

a31 � a11 C a32 � a21 C a33 � a31 a31 � a12 C a32 � a22

C a13 � a32 a11 � a13 C a12 � a23 C a13 � a33

C a23 � a32 a21 � a13 C a22 � a23 C a23 � a33

C a33 � a32 a31 � a13 C a32 � a23 C a33 � a33

1

A

(3.12)

If A is perfectly consistent, then

bij D
3X

kD1

aik � akj D 3aij (3.13)

So B D A � A D
0

@

3a11 3a12 3a13

3a21 3a22 3a23

3a31 3a32 3a33

1

A D 3A (3.14)

And C D A � A � 3A D
0

@

0 0 0

0 0 0

0 0 0

1

A (3.15)

The scale values in pairwise matrix are given by experts according to their
judgments and expertise. To be consistent, the rank can be transitive but the values of
judgment do not necessarily follow the multiplication formula aikakj D aij (Saaty
1991, 2001b). Obviously, the closer the values of aikakj to the value of aij , the more
consistent the comparison matrix is.

Hence, the values of aikakj should be as close to the value of aij as possible.
If the consistency index of this matrix is less than 0.1, as the average of express

nP

kD1

aik � akj is close to the value of aij , no correction of judgment matrix is needed.

The values of all elements are close to zero in the induced bias matrix C .
If the absolute value of element in the induced bias matrix is much larger than

zero, it indicates that the deviation between the average of
nP

kD1

aik � akj and the value

of aij is not negligible. It shows that either some of the values of aikakj are too large
or the corresponding value of aij is too small. The deviation could be observed in
the induced bias matrix C , and the possible error elements could also be identified
by the vectors dot product method. The decision maker may revise his judgments
once the deviation elements are identified.
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In the Theorem 3.2, the correctness of the IBMM for consistency case is
proved mathematically. Based on the Theorem 3.2 and the above analysis, in the
following, the critical theorem of IBMM for inconsistency identification is proposed
and proved mathematically by maximum eigenvalue method and by contradiction
method.

Theorem 3.3. There must be some inconsistent elements in the induced bias matrix
(IBM) C deviating far away from zero if the pairwise matrix is inconsistent.
Especially, any row or column of matrix C contains at least one positive element.

1. Proof by maximum eigenvalue method. We prove that if the PCM A is inconsis-
tent, then the induced bias matrix C D AA � nA cannot be zero. More precisely,
we show that any row of C contains at least one nonzero element.

It is known, see e.g. Saaty (1980), that for the maximal eigenvalue �max of A we
have �max � n, and the corresponding unique eigenvector !max is a positive vector.
Furthermore, A is consistent if and only if �max D n. By applying

A !max D �max!max (3.16)

at the appropriate places, we obtain

C !max D .AA � nA/ !max D �maxA!max � n�max!max

D �2
max!max � n�max!max D �max .�max � n/ !max (3.17)

Since �max>n, we get that C !max is a positive vector, consequently, C cannot
have any row containing only zeros. Moreover, since both C !max and !max are
positive vectors, any row or column of C must contain at least one positive element.

�

2. Proof by contradiction. It has been proved previously that if a reciprocal pairwise
comparison matrix (RPCM) is perfectly consistent, that is, aij D aikakj for all
i; j; k, then we can get

cij D
nX

kD1

aik � akj � naij D naij � naij D 0 (3.18)

If a PCM A is inconsistent, then aij ¤ aikakj at least holds for one of the
i; j; k.i; j; k D 1; 2; � � � ; n/. Moreover, it can be shown that if A is inconsistent,
then for any i there exist j and k such that aij ¤ aikakj , see Corollary 2 in Bozóki
et al. (2011). Now assume a PCM A is inconsistent, but the i-th row of the induced
bias matrix C contains only nonpositive elements. Then aij ¤ aikakj with some j
and k, and ci1 � 0;ci2 � 0;: : : ;cin � 0. We can get the following inequalities:
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8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

ci1 D
nX

kD1

aikak1 � nai1 � 0

ci2 D
nX

kD1

aikak2 � nai2 � 0

:::

cin D
nX

kD1

aikakn � nain � 0

(3.19)

)

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

1

ai1

nX

kD1

aikak1 � n

1

ai2

nX

kD1

aikak2 � n

:::

1

ain

nX

kD1

aikakn � n

(3.20)

Add all the inequalities together in the system of inequalities (3.20), we can get

1

ai1

nX

kD1

aikak1 C 1

ai2

nX

kD1

aikak2 C � � � C 1

ain

nX

kD1

aikakn � n2 (3.21)

)
nX

kD1

1

ai1

aikak1 C
nX

kD1

1

ai2

aikak2 C � � � C
nX

kD1

1

ain

aikakn � n2 (3.22)

)
nX

j D1

nX

kD1

1

aij

aikakj D
nX

j D1

nX

kD1

akj

aik

aij

� n2 (3.23)

To easily observe the rule of each term in the sum, the inequality (3.22) or (3.23)
can be unfolded to the following matrix form,
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(3.24)

Since matrix A is a reciprocal matrix, that is, akj D 1
ajk

and akj > 0;aij >

0;aik > 0, and it can easily be seen from the expansion inequality (3.24) that any
of the above inequalities (3.20), (3.21), (3.22), and (3.23) can be simplified as the
following inequality:

n C
X

k>j

�

akj

aik

aij

C ajk

aij

aik

�

� n2 (3.25)

)
X

k>j

�

akj

aik

aij

C ajk

aij

aik

�

� n2 � n (3.26)

Since there are n.n�1/

2
sum term at the left side of the inequality (3.26), and

akj
aik

aij
C ajk

aij

aik
D akj

aik

aij
C 1

akj
aik
aij

� 2, the inequality (3.26) holds if and only

if akj
aik

aij
D 1, namely, aij D aikajk for all j and k. However, this result contradicts

the previous assumption that aij ¤ aikakj for some j and k. Therefore, one of the
inequalities, at least, does not hold, thus, (3.26) holds with > sign. This entails that
at least one of elements in the i-th row of the induced bias matrix C is positive. �

Based on the above two proofs for rows, the same proofs for columns can also
be induced. If A is a pairwise comparison matrix with the reciprocal property, the
transpose of A is also a pairwise comparison matrix with the reciprocal property. In
addition, A is consistent if and only if the transpose of A is consistent.
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The transpose of the IBM C generated by A is the IBM generated by the transpose
of A. Consequently, if C is inconsistent, any column of C contains at least one
positive element. The same statement for the rows was stated earlier.

To demonstrate the principles of Theorem 3.2 and Theorem 3.3, a 3�3 reciprocal
pairwise matrix with errors is introduced as an example. Let A D .aij / be a 3 � 3

pairwise matrix and without loss of generality, let us assume that some errors are
introduced as

a0
12 D ea12; a0

13 D .2 � e/ a12 (3.27)

where the e denotes error. Since aij > 0, the e should satisfy the inequality
0 < e < 2.

According to the reciprocal condition, the comparisons matrix A should be

A D
0

@

a11 a0
12 a0

13

a0
21 a22 a23

a0
31 a32 a33

1

A D
0

@

a11 ea12 .2 � e/a13

1=ea12 a22 a23

1=.2 � e/a13 a32 a33

1

A (3.28)

)

AA D
0

@

a11 ea12 .2 � e/a13

1=ea12 a22 a23

1=.2 � e/a13 a32 a33

1

A

0

@

a11 ea12 .2 � e/a13

1=ea12 a22 a23

1=.2 � e/a13 a32 a33

1

A

D
0

@

a11 C 2 .2 C e/a12 .4 � e/a13

a21=e C a21=e C a21=.2 � e/ a22 C 2 .2 � e/a23=e C 2a23

a31=.2 � e/ C a31=e C a31=.2 � e/ ea32=.2 � e/ C 2a32 a33 C 2

1

A

D
0

@

3 .2 C e/a12 .4 � e/a13

.2=e C 1=.2 � e//a21 3 ..2 � e/=e C 2/a23

.2=.2 � e/ C 1=e/a31 .e=.2 � e/ C 2//a32 3

1

A
(3.29)

Note W a21 D 1
a12

; a31 D 1
a13

; a11 D a22 D a33 D 1

Apply the proposed method to the induced bias matrix C :

C D AA � 3A

D
0

@

3 .2 C e/a12 .4 � e/a13

.2=e C 1=.2 � e//a21 3 ..2 � e/=e C 2/a23

.2=.2 � e/ C 1=e/a31 .e=.2 � e/ C 2//a32 3

1

A
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� 3 �
0

@

a11 ea12 .2 � e/a13

a21=e a22 a23

a31=.2 � e/ a32 a33

1

A

D

0

B
@

0 2.1 � e/a12 2.e � 1/a13
2.e�1/
.2�e/e

a21 0
2.1�e/

e
a23

2.1�e/

e.2�e/
a31

2.e�1/

2�e
a32 0

1

C
A

(3.30)

The result shows that the IBMC is not a zero matrix if there are some errors
.e ¤ 1/ in the comparison matrix A.

In order to exhibit the Theorem 3.2 and Theorem 3.3 using concrete errors, we
can analyze two cases:

1. Case 1- comparison matrix A does not have any errors;
2. Case 2- comparison matrix A has errors.

Assume e D 1 and e D 1
2

respectively, which means that there is no errors
in the comparison matrix A and there is some errors in the comparison matrix A

respectively. Then the IBM C is calculated by applying the corresponding error to
the formula (3.30). The detailed are showed as follows:

1. Case 1: If e D 1, then

C D A � A � 3A D
0

@

0 0 0

0 0 0

0 0 0

1

A (3.31)

According to the Theorem 3.1, the pairwise comparison matrix A is perfectly
consistent. The result is in accordance with the above assumption.

2. Case 2: If e D 1
2
, then the IBM C becomes

C D AA � 3A D
0

@

0 a12 �a13

�4a21=3 0 2a23

4a31=3 �2=3a32 0

1

A (3.32)

Obviously, the IBM C is not a zero matrix, which is consistent with the Theorem
3.3. From the above results we find that all entries in the main diagonal of the IBM
C are equal to zero. This result indicates that the comparison matrix A satisfies the
reciprocal condition although it is inconsistent. Therefore, the following theorem
can be derived.

Theorem 3.4. All entries in the main diagonal of the induced bias matrix (IBM)
C D AA � nA should be zeroes whether matrix A is consistent or not as long as
the comparison matrixA satisfies the reciprocal condition.
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Proofs. According to the principle of matrix multiplication, all values in the main
diagonal of the induced bias matrix C can be calculated by the formula (3.33):

ci i D
nX

kD1

aik � aki � naii (3.33)

If aki D 1
aik

; and aii D 1, then

ci i D
nX

kD1

aik � aki � naii D
nX

kD1

aik � 1

aik

� naii D n � n D 0; i D 1; 2; � � � ; n

(3.34)

�
The case that the comparison matrix A satisfies the reciprocal condition has been

proved previously in the section, the following example will show the case that the
comparison matrix A does not satisfy the reciprocal condition.

Once again, we use the 3 � 3 pairwise matrix A D .aij / with errors as the
example and the assumption given in formula (3.28) to prove the second case.
Without loss of generality, let us assume a21 and a31 do not have any errors, then
the comparison matrix A D .aij / becomes

A D
0

@

a11 ea12 .2 � e/a13

a21 a22 a23

a31 a32 a33

1

A (3.35)

According to the proposed method, the induced bias matrix C becomes:

C D
0

@

0 .2 � 2e/a12 .2e � 2/a13

0 .e � 1/a22 .1 � e/ � a23

0 .e � 1/a32 .1 � e/a33

1

A (3.36)

Obviously, the elements in the main diagonal of the induced bias matrix C are
not equal to zeroes except the situation when there has no errors (e D 1). It proofs
the comparison matrix A is not reciprocal, which is consistent with the previous
assumption. �

According to Theorem 3.4, if matrix A is reciprocal, the diagonal elements of C
are 0. However, for the matrix A with order higher than 3, we cannot derive that
matrix A must be reciprocal even if the diagonal elements of C are 0. But if the
diagonal elements of C are not 0 or contains some nonzero elements, then we can
derive that the matrix A does not satisfy the reciprocal condition, and some of the
elements at least are not reciprocal. Although the reciprocal property can be checked
directly in the matrix A in a simple and exact way, and it seems that there is no need
to make it more complicated, it is still an effective way for ANP to exclude the case
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that the inconsistency is only caused by violating the reciprocal property due to there
are plenty of comparison matrices in ANP than in AHP. Moreover, all the values of
comparison matrices are normally input manually, and it is sometimes easy to make
mistakes and cause the comparison matrices to be inconsistency.

3.2 IBMM for Inconsistent Data Identification
and Adjustment

3.2.1 The Basics of the Inconsistency Identification
and Adjustment Method

We have previously proved that any row of the IBM C contains at least one non-zero
element if the PCM A is inconsistent, that is, aij ¤ aikakj holds at least for one
group of i; j; k, which means that there is at least one pair of inconsistent elements
existing in the original PCM A. Suppose cij , the element with largest absolute value
in the IBM C, is identified. The second step is to analyze that which element makes
cij to be far away from zero. According to the rule of matrix multiplication, the
value of cij is calculated by all values on the i th row and j th column of matrix A
and aij , that is,

cij D
nX

kD1

aik � akj � naij

D ai1a1j � aij C ai2a2j � aij C � � � C aikakj � aij C � � � C ainanj � aij

(3.37)

Clearly, the farthest value of cij can be impacted by any term of aikakj � aij

on the right side of the sum equality (3.37). In order to identify the inconsistent
elements that caused the value of cij to be far away from zero, the scalar product of
vectors in n dimension technique is introduced. The impact of each term can easily
be observed by the scalar product of vectors in n dimension technique, that is,

b D ri � cT
j D .ai1; ai2; � � � ; ain/ � �a1j ; a2j ; � � � ; anj

�D �

ai1a1j ; ai2a2j ; � � � ; ainanj

�

(3.38)

and

f D b � aij D �

ai1a1j � aij ; ai2a2j � aij ; � � � aikakj � aij ; � � � ; ainanj � aij

�

(3.39)

If aij ¤ aikakj , then aikakj � aij ¤ 0. Therefore, the non-zero element(s),
which caused the value of cij to be far away from zero, can be identified through
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observing all elements in the bias identifying vector f . In addition, the inequality
aij ¤ aikakj can be caused by aij or any aikakj .k D 1; 2; � � � ; n/ or both.

Obviously, if the inconsistent element is aij , other elements are consistent.
Assume aikakj D a0

ij > aij , namely, aij is too small. We can get all values in
the bias identifying vector f are positive except k D i; j , as aii aij � aij D 0 and
aij ajj �aij D 0. Vices versus, if aij is too large, all the values in the bias identifying
vector f will be negative except two values k D i; j . Therefore, the “Method
for identifying aij ” inconsistency identification method was proposed (Ergu et al.
2011a).

Besides, the farthest value of cij must be caused by some outliers either too
large or too small located at the bias identifying vector f , therefore, “Method for
Maximum” and “Method for Minimum” inconsistency identification methods were
proposed (Ergu et al. 2011b).

In order to further identify the inconsistent element for those elements whose
values are close to the largest or smallest simultaneously, therefore, the “Method
of matrix order reduction” inconsistency identification method was proposed (Ergu
et al. 2011b).

3.2.2 The Processes of Inconsistency Identification
and Adjustment Method

Assuming the pairwise comparison matrix A with n rows and n columns is incon-
sistent. Based on the above analysis of the basics of inconsistency identification and
adjustment method, the processes to identify inconsistent elements of comparison
matrix as well as the methods to analyze and adjust those elements are proposed as
the following three major steps which include 7 specific identifying steps.

Step I: Identify the location of inconsistent element whose absolute value is the
largest in the induced pairwise comparison matrix.

Step 1: Construct an induced matrix C with the following formula:

C D AA � nA

Step 2: Identify the largest absolute value(s) of elements deviating farthest from
zero in the induced matrix C , and record the location. For instance, suppose
cij is such an element in matrix C and the location is i th row and j th column.

Step II: Identify the potential inconsistent elements by the bias identifying
vector.

Step 3: Let the i th row of the original pairwise comparison matrix A be
represented as a row vector ri D .ai1; ai2; � � � ; ain/ and the j th column of
the same matrix as a column vector cT

j D .a1j ; a2j ; � � � ; anj /T , where cT
j is

the transpose vector of column vector cj .
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Step 4: Calculate the scalar product of the vectors ri and cT
i in n dimension. The

dot product b of the two vectors becomes:

bDri � cT
j D .ai1; ai2; � � � ; ain/ � �a1j ; a2j ; � � � ; anj

�D �

ai1a1j ; ai2a2j ; � � � ; ainanj

�

Step 5: Compute the deviation elements which are far away from aij in vector b

by the following formula. Let f be the bias identifying vector henceforth.

f Db � aij D �

ai1a1j � aij ; ai2a2j � aij ; � � � aikakj � aij ; � � � ; ainanj � aij

�

Step III: Identify the inconsistent elements using the identification method and
the method of matrix order reduction.

Step 6: Identify the error elements in pairwise matrix A that might cause the
inconsistency by bias identifying vector f using the following three principal
identification methods and the method of matrix order reduction.

(a) Method of Maximum: If more absolute values in vector f are around zero,
and fewer values are deviating from zero, then identify the largest value in
vector f . If there are other values close to the largest one, then identify those
elements simultaneously.

(b) Method of Minimum: If more absolute values of elements in vector f are
far away from zero, and fewer values are close to zero, or equal to zero, then
identify the smallest value in vector f . If there are other values close or equal
to the smallest one, then identify those elements simultaneously.

(c) Method for identifying aij :

1. If the largest value in induced matrix C is negative, then aij is too large.
2. If there are only two zeroes where the location is i th and j th in bias

vector f , and others are positive, then aij is too small. Otherwise, aij

is too large. In the former case, if aij is already close to the maximum
scale 9, then identify the next largest value in the induced matrix C , and
further identify other inconsistent elements using method of matrix order
reduction.

Assume the bias value of aikakj � aij in bias vector f is the largest positive one,
and others are around zero. Clearly, aikakj is larger than aij , and others are equal
or close to aij . Then, there are following four conditions.

Condition 1: aik is too large;
Condition 2: akj is too large;
Condition 3: Both aik and akj are too large; or
Condition 4: aij is too small.
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Given the above conditions, the element to be adjusted could be identified as
Step 7:

Step 7: Find the values of cik and ckj in the induced matrix C according to the
following procedures:

Based on our assumption, that is, assume the bias value of aikakj � aij in bias
vector f is the largest positive one, then one or both aik and akj are too large,
therefore it is impossible that cik > 0 and ckj > 0 simultaneously.

If cik < 0 and ckj > 0, thenaik is too large due to cik D 1
n

nP

lD1

ail alk � aik , and

akj is too small. If aik is too large, then the decision makers should decrease
the value of element aik , so the value of aikakj is closer to the value of aij .

If cik > 0 and ckj < 0, similarly, the decision makers should decrease the value
of element akj , so the value of aikakj is closer to the value of aij .

If cik < 0 and ckj < 0, and the bias between both absolute values are too large,
then the maximum absolute element can be identified using the inconsistency
identification method again.

If cik < 0 and ckj < 0, and the bias between both absolute values are close to
each other, then the following method of matrix order reduction for pair-wise
matrix could be used to identify the bias elements. This method could identify
the bias elements accurately and keep the comparison information provided by
the experts as much as possible, especially for the pair-wise matrix with high
order. The method of matrix order reduction could also identify the elements
which are close to the largest or smallest simultaneously.

3.2.2.1 Method of Matrix Order Reduction

As illustrated above, both aik and akj are either too large or the value of aij is too
small. It indicates that some attributes or criteria, namely, Ai , Ak or Aj have impacts
on other attributes and is an inconsistent element. Therefore, we can test whether it
can pass the consistency test or not by removing some attributes one by one from
the original pair-wise matrix, which is called method of matrix order reduction. The
inconsistent attributes could be identified by this method with the following sub-
steps:

Sub-step 1: Test the consistency of the order reduced comparison matrix
A.n�1/�.n�1/ by removing the attribute Ak , namely, deleting kth row and kth

column from the original pair-wise matrix A.
If the consistency test passed, the attribute Ak is inconsistent whileaij is

consistent, then go to sub-step 2 to identify aik and akj .
If the consistency test failed, there must be other inconsistent attributes in the

order reduced pair-wise matrix. Hence, aij is inconsistent and the value of aij
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Table 3.1 The identification
process for method of matrix
order reduction
(Sub-step 1–3)

Remove Test Might problem Good Problem

Ak

p
aik; akj aij

� aik; akj aij

Ai

p
aik akj

� akj

Aj

p
akj aik

� aik

can be increased so it is closer to the average of
nP

kD1

aik � akj . Meanwhile, both

aik and akj also might be problematic, and continue to Sub-step2.

Sub-step 2: Test the consistency of the order reduced pair-wise matrix A.n�1/�.n�1/

by removing the attribute Ai from the original pair-wise matrix A.
If the consistency test passed, both attributes Ak and Aj are consistent. There

is no need to change akj . Hence, decrease aik as aij was identified in Sub-step 1.
If the consistency test failed, at least one of the attributes Ak or Aj is

inconsistent, then decrease akj . Meanwhile, aik might also be inconsistent, and
go to Sub-step 3.

Sub-step 3: Test the consistency of order reduced pair-wise matrix A.n�1/�.n�1/ by
removing the attribute Aj from the original pair-wise matrix A.

If the consistency test passed, then aik is consistent; otherwise aik should be
decreased.

If the consistency test failed in both sub-step 2 and sub-step 3, we have to let
the decision makers to change both elements aik and akj simultaneously.

If the decision makers want to further check whether there exists other
inconsistent attributes, we have to test the consistency of the order reduced pair-
wise matrix by removing attributes Ai , Ak or Aj simultaneously.

To explain the identification process, Table 3.1 shows the identification process
of aik , akj and aij . In Table 3.1, “Remove” represents removing the corresponding
attributes. “Test” denotes the consistency test for the order reduced pair-wise
matrix. “Might Problem” stands for the elements might have inconsistent problem.
“Good” denotes the elements are consistent. “Problem” denotes the elements are
inconsistent. “�” denotes the consistency test failed while “

p
” stands for a passed

consistency test. Ai , Ak and Aj stand for three different attributes.

3.2.3 Fast Inconsistency Identification and Adjustment Method

Some general inconsistency identification methods have been presented previously.
In Ergu et al. (2011f), one fast inconsistency identification and adjustment method
was proposed for some special cases that there exists only one pair of inconsistent
elements in the original PCM.
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Assume that PCM A is inconsistent, and there is one pair of inconsistent elements
aip and its corresponding reciprocal element api D 1

aip
, while other elements are

consistent, namely, aikakj D aij for all k except k D p (aipapj ¤ aij ). Therefore,
the two inconsistent elements are elements at the i th and pth rows, and the pth and
i th column. According to the rule of matrix multiplication, all elements, which are
located at the i th, pth rows, and the i th, pth column in the induced bias matrix
C D AA � nA, will be impacted by aip and api . Since it is assumed that aikakj D
aij .k ¤ pI j ¤ p;/ and aikakp ¤ aip , suppose aikakp D a0

ip , all the values in the

i th row of the IBM C can be computed by formula (3.37), that is,
For the i th row:

cij D
nX

kD1

aik � akj � naij D
nX

kD1;¤p

aik � akj C aipapj � naij ; j D 1; 2; � � � ; n

D

8

ˆ̂
<

ˆ̂
:

.n � 1/ aij C aipapj � naij D aipapj � aij I j ¤ i; p

.n � 1/ C 1 � n D 0I j D i

.n � 2/ a0
ip C aii aip C aipapp � naip D .n � 2/

�

a0
ip � aip

� I j D p

(3.40)

In order to analyze the sign change of each element on the i th row, the equalities
in (3.40) are further unfolded, as shown below.

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

ci1 D aipap1 � ai1

ci2 D aipap2 � ai2

:::

ci i D 0

:::

cip D .n � 1/ a0
ip C aii aip C aipapp � naip D .n � 2/ .a0

ip � aip/

:::

cin D aipapn � ain

(3.41)
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If aip ": then

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

ci1 D aipap1 � ai1 > 0

ci2 D aipap2 � ai2 > 0

:::

ci i D 0

:::

cip D .n � 1/ a0
ip C aii aip C aipapp � naip D .n � 2/ .a0

ip � aip/ < 0

:::

cin D aipapn � ain > 0

(3.42)

If aip #: then

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

ci1 D aipap1 � ai1 < 0

ci2 D aipap2 � ai2 < 0

:::

ci i D 0

:::

cip D .n � 1/ a0
ip C aii aip C aipapp � naip D .n � 2/ .a0

ip � aip/ > 0

:::

cin D aipapn � ain < 0

(3.43)

where the symbols “"” and “#” denote “increase” and “decrease” respectively
(hereinafter).

Likewise, for the pth row:

cpj D
nX

kD1

apk � akj � napj D
nX

kD1;¤i

apk � akj C api aij � napj ; j D 1; 2; � � � ; n

D

8

ˆ̂
<

ˆ̂
:

.n � 1/ apj C api aij � napj D api aij � apj I j ¤ i; p

0I j D p

.n � 1/ a0
pj C api ai i C appapi � napi D .n � 2/

�

a0
pi � api

� I j D i

(3.44)
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Therefore, if aip ", then api D 1
aip

#,

cpj D

8

ˆ̂
<

ˆ̂
:

.n � 1/ apj C api aij � napj D api aij � apj < 0I j ¤ i; p

0I j D p

.n � 1/ a0
pj Capi ai i Cappapi �napi D .n � 2/

�

a0
pi � api

�

> 0I j D i

(3.45)

Likewise, if aip #, then api D 1
aip

",

cpj D

8

ˆ̂
<

ˆ̂
:

.n � 1/ apj C api aij � napj D api aij � apj > 0I j ¤ i; p

0I j D p

.n � 1/ a0
pj Capi ai i Cappapi � napi D .n � 2/

�

a0
pi � api

�

< 0I jDi

(3.46)

If aip ", all values on the i th row of IBM C will be more than zeroes
(cij > 0; j D 1; 2; � � � ; n and j ¤ p) except cip < 0, and all values on the pth

row of IBM C will be less than zeroes (cij < 0; j D 1; 2; � � � ; n and j ¤ p)
except cip > 0. Therefore, only the elements on the i th row and pth row are non-
zeroes, and the sign form of the values on the i th row and pth row of the IBM C can
be derived, as shown in the following matrix,

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

i th pth

C � � � C 0 C � � � � C � � � C

� � � � � C � � � � 0 � � � � �

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

i th

pth

(3.47)



48 3 IBMM for Inconsistent Data Identification and Adjustment in the AHP/ANP

Likewise, the signs of each element on the i th column and pth column can be
derived similarly. That is,

cj i D
nX

kD1

ajk � aki � naj i D
nX

kD1;¤p

ajk � aki C ajpapi � naj i ; j D 1; 2; � � � ; n

D

8

ˆ̂
<

ˆ̂
:

.n � 1/ aj i C ajpapi � naj i D ajpapi � aj i I j ¤ p; i

0I j D i

.n � 1/ a0
pi C api ai i C appapi � napi D .n � 2/

�

a0
pi � api

� I j D p

(3.48)

if aip ", api D 1
aip

#,

cj i D

8

ˆ̂
<

ˆ̂
:

.n � 1/ aj i C ajpapi � naj i D ajpapi � aj i < 0I j ¤ p; i

0I j D i

.n � 1/ a0
pi Capi ai i Cappapi � napi D .n � 2/

�

a0
pi � api

�

> 0I jDp

(3.49)

For the pth column,

cjp D
nX

kD1

ajk � akp � najp D
nX

kD1;¤i

ajk � akp C aj i aip � najp; j D 1; 2; � � � ; n

D

8

ˆ̂
<

ˆ̂
:

.n � 1/ ajp C aj i aip � najp D aj iaip � ajpI j ¤ p; i

0I j D p

.n � 1/ a0
ip C aii aip C aipapp � naip D .n � 2/

�

a0
ip � aip

� I j D i

(3.50)

if aip ",

cjp D

8

ˆ̂
<

ˆ̂
:

.n � 1/ ajp C aj iaip � najp D aj i aip � ajp > 0I j ¤ p; i

0I j D p

.n � 1/ a0
ip C aii aip C aipapp � naipD .n � 2/

�

a0
ip � aip

�

< 0I jDi

(3.51)

Therefore, the sign forms of the elements on the i th and pth columns of the IBM
C can be obtained, as shown in (3.52)
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0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

i th pth

� C
:::

:::

� � � � C
0 �
� C
C � � � 0

� C
:::

:::

� C

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

i th

pth

(3.52)

To sum up, if aip ", the signs of all the values, which are located at the i th row
and the i th column, the pth row and pth column, become:

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

i th pth

� C
:::

:::

� C
C � � � C 0 C � C � � � C

� C
� � � � � C � 0 � � � � �

� C
:::

:::

� C

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

i th

pth

(3.53)

Therefore, we can obtain the following fast inconsistency identification method:

3.2.3.1 Method of Non-Zero Rows (Columns) and Signs Identification

If there are two rows (the i th row and the pth row) and two columns (the i th column
and pth column) with non-zeroes, and other elements are zero, the inconsistent
elements must be aip and api .

If cip < 0 and other elements located at the i th row or pth column are more than
zeroes, aip is too large and should be decreased. Vice versus, aip is too small and
should be increased.

If cpi > 0 and other elements located at the pth row or i th column are less than
zeroes, aip is too large and should be decreased. Vice versus, aip is too small and
should be increased.
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In addition,

cip D
nX

kD1

aik � akp � naip D
nX

kD1;¤i;p

aik � akp C aii aip C appaip � naip (3.54)

To make the PCM A be consistent, the value of cip should be equal to zero.
Therefore, inconsistent element aip can be adjusted by formula (3.55).

aip D 1

n � 2

nX

kD1;¤i;p

aik � akp (3.55)

In this case, since there is only one pair of inconsistent elements, aip and api in
the PCM, any aikakp D a0

ip.k ¤ i; p;/ can be used as the revised value of aip .

3.3 Illustrative Examples

3.3.1 Illustrative Examples for General Inconsistency
Identification and Adjustment Method

In order to test and compare the inconsistency identification method illustrated
above with others methods, Ergu et al. (2011b) applied the proposed IBMM to some
public-domain examples. The first example is a pairwise matrix with unacceptable
CI, which was introduced in Liu (1999). The second example that covers different
types of errors in pairwise comparison matrices is provided by an anonymous
reviewer of Ergu et al. (2011b). The third example was used by Iida (2009) as an
example of ordinality consistency test, which was first introduced in (Kwiesielewicz
and Uden 2002) as an example of a pair-wise comparison matrix with C.R is
0.1055. In addition, a new pairwise matrix was generated by adding an attribute with
random value in the third example to test the proposed inconsistency identification
method. Finally, an example, which was introduced by Cao et al. (2008) to compare
their heuristic inconsistency modifying approach with Xu and Wei (1999)’s, is
also introduced to demonstrate that the proposed IBMM can not only preserve
more original comparison information than others but also identify the inconsistent
elements easier and quicker. Besides, with this example we also want to demonstrate
the identification process for some special situations in the original comparison
matrix mentioned in Method for adjusting aij section.

Example 3.1. The 4 � 4 pair-wise comparison matrix A is inconsistent with
C.R D 0.173 > 0.1.
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A D

0

B
B
@

1 1=9 3 1=5

9 1 5 2

1=3 1=5 1 1=2

5 1=2 2 1

1

C
C
A

The proposed IBMM is applied to test this pair-wise comparison matrix follow-
ing (Step 1)–(Step 7) in Section 3.2.2 using MATLAB.

Step 1. The induced matrix C D A 	 A � 4 	 A is

0

B
B
@

0 0:4778 �5:0444 1:3222

�6:3333 0 21:0000 0:3000

3:6333 �0:1130 0 �0:5333

�4:8333 �0:0444 13:5000 0

1

C
C
A

Step 2. The largest value in matrix C is 21, where location is second row and third
column.

Step 3. Draw out all the values in second row and third column of pair-wise matrix
A, that is

r2 D �

9 1 5 2
�

; and cT
3 D �

3 5 1 2
�

Step 4. The scalar product b of the vectors r2 and cT
3 in the dimension 4, that is

b D r2 � cT
3 D �

27 5 5 4
�

Step 5. The bias identifying vector f is

f D b � a23 D �

22 0 0 �1
�

Step 6. The value, 22, is the largest one far from zero, and others are zero or close
to zero. It indicates that a23 D 5 is probably correct while 22 D a21a13 � a23 is
the inconsistent element. Therefore, we identified a21a13 may have problem.

Step 7. As c21 D �6:3333 < 0 and c13 D �5:0444 < 0, whose values are close
to each other, the corresponding elements a21 and a13 are too large. Then, the
method of matrix order reduction is applied to identify a21 and a13.

Sub-step 1. Remove second row and second column from pair-wise matrix A, and
do the consistency test, the �max D 3:4683, and C.R. D 0.3 > 0.1, the test failed.
Check a13, and decrease the value of a13 and let the product value of a21a13 as
close to a23 D 5 as possible.

Sub-step 2. Remove third row and third column from the pair-wise matrix A, and
do the consistency test, the �max D 3:0012, and C.R. D 0 < 0.1, the test passed.
So no further correction is needed for a21.
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Sub-step 3. Remove first row and first column from pair-wise matrix A, and do
the consistency test, the �max D 3:0055, and C.R. D 0 < 0.1, the test passed. No
correction is needed for a23. Besides, according to the result in Step 5, a23 is
consistent.

Most of the time, we don’t need to finish all Sub-steps for inconsistency
test, except some situations when complicated inconsistency identification and
adjustment is needed.

As a23 D 5 and a21 D 9 are given in the original pair-wise matrix, let a13 D1/2,
and a31 D 2, then a21a13 is equal to 4.5, which is very close to a23 D 5.
Replace the two values from comparison matrix, and the consistency test passed
with C.R. D 0.0028 < 0.1. This result is the same as the one in (Liu 1999). However,
in Liu’s method (Liu 1999), two matrices are needed to identify the inconsistent
elements including an induced matrix based on priority vector derived from the
comparison matrix and another deviation matrix. In the proposed method, there is
no need to construct a new induced matrix based on the priority vector derived
from the pairwise matrix and another deviation matrix to identify the inconsistent
elements.

Example 3.2. To demonstrate such case that the example covers different types of
errors in pair-wise comparison matrices, that is, there is more than one largest value
which is equal to each other in the induced bias matrix C, the following inconsistent
comparison matrix with an outlying judgment and CR D 1.0242 is introduced.

A D

2

6
6
4

1 2 4 1
8

1
2

1 2 4
1
4

1
2

1 2

8 1
4

1
2

1

3

7
7
5

Step 1. The induced matrix C D A 	 A � 4 	 A is

0

B
B
@

0 �1:9688 �3:9375 15:7500

31:5000 0 0 �3:9375

15:7500 0 0 �1:9688

�15:7500 15:7500 31:5000 0

1

C
C
A

Step 2. There are two equal largest values in matrix C , 31.5, where locations are
second row and first column, fourth row and third column. In such case, we can
identify one of them firstly, or identify both of them simultaneously. To compare
the identified results, the following steps identify both elements simultaneously.

Step 3. Draw out all the values in second row and first column, fourth row and third
column of pair-wise matrix A, that is

r2 D �

0:5 1 2 4
�

; and cT
1 D �

1 0:5 0:25 8
�
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r4 D �

8 0:25 0:5 1
�

; and cT
3 D �

4 2 1 0:5
�

Step 4. The scalar product b1 of the vectors r2 and cT
1 , and the scalar product b2 of

the vectors r4 and cT
3 in the dimension 4 are

b1 D r2 � cT
1 D �

0:5 0:5 0:5 32
�

b2 D r4 � cT
3 D �

32 0:5 0:5 0:5
�

Step 5. The bias identifying vectors fi .i D 1; 2/ are

f1 D b1 � a21 D �

0 0 0 31:5
�

f2 D b2 � a43 D �

31:5 0 0 0
�

Step 6. The values, 31.5, in both bias identifying vectors, are the largest one far
from zero, and others are zero in both vectors. The results indicate that a21 D 0:5

and a43 D 0:5 are correct while 32 D a24a41 in b1 and 32 D a41a13 in b2 are
the inconsistent elements. Therefore, we identified a24, a41 and a13 may have
problems.

Step 7. As c24 D c13 D �3:9375 < 0 and c41 D �15:75 < 0, the a41 is the largest
value far from zero, therefore, the corresponding elements a41 is too large, and it
is suggested to be decreased. The following is the revising process of a41.

Since a24a41 D 32 should be equal to a21 D 1
2

in b1, and we have known a24 D 4.
Therefore, a41 D a21

a24
D 1

8
. According to reciprocal rule, we can get a14 D 8.

Likewise, Since a41a13 D 32 should be equal to a43 D 1
2

in b2, and we have known
a13 D 4. Therefore, a41 D a43

a13
D 1

8
, and we can get a14 D 8.

Replace the values of a14 and a41 in the original comparison matrix A with 8
and 1/8, then the induced bias matrix C becomes a zero matrix as follows, and the
modified comparison matrix passed the test with C.R. D 0 < 0.1.

0

B
B
@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

C
C
A

Therefore, in such case where there are two or more than two largest values
which are equal to each other in the induced bias matrix, we can identify one of
them firstly, then use another element to validate the identification result, or identify
them simultaneously using the proposed method.
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Example 3.3. The 8 � 8 pair-wise comparison matrix A first introduced in
(Kwiesielewicz and Uden 2002) as an example of a pair-wise comparison matrix.
This pair-wise matrix is slightly inconsistent with C.R D 0.1055 > 0.1.

A D

2

6
6
6
6
6
6
6
6
6
6
6
4

1 2 1=2 2 1=2 2 1=2 2

1=2 1 4 1 1=4 1 1=4 1

2 1=4 1 4 1 4 1 4

1=2 1 1=4 1 1=4 1 1=4 1

2 4 1 4 1 4 1 4

1=2 1 1=4 1 1=4 1 1=4 1

2 4 1 4 1 4 1 4

1=2 1 1=4 1 1=4 1 1=4 1

3

7
7
7
7
7
7
7
7
7
7
7
5

According to the proposed method, we have:

Step 1. The induced matrix C D A 	 A � 8 	 A is

0

B
B
B
B
B
B
B
B
B
B
B
@

0 �1:8750 7:5000 0 0 0 0 0

7:5000 0 �22:5000 15:0000 3:7500 15:0000 3:7500 15:0000

�1:8750 22:5000 0 �3:7500 �0:9375 �3:7500 �0:9375 �3:7500

0 �0:9375 3:7500 0 0 0 0 0

0 �3:7500 15:0000 0 0 0 0 0

0 �0:9375 3:7500 0 0 0 0 0

0 �3:7500 15:0000 0 0 0 0 0

0 �0:9375 3:7500 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
A

Step 2. The value, 22.5 (third row and second column.), is the largest one in
matrix C .

Step 3. The vectors are

r3 D �

2 0:25 1 4 1 4 1 4
�

and

cT
2 D �

2 1 0:25 1 4 1 4 1
�

Step 4. The scalar product b is

b D r3 � cT
2 D �

4 0:25 0:25 4 4 4 4 4
�

Step 5. The bias identifying vector f is

f D b � a32 D �

3:75 0 0 3:75 3:75 3:75 3:75 3:75
�

Step 6. According to the method of minimum, most of the values in bias vector
f are deviating equally from zero except two values are equal to zero whose
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location is the same as a32. Thereby, a32 is too small. Likewise, the first 0 D
a32a22 � a32, the second 0 D a33a32 � a32. We know that a22 D 1 and a33 D 1,
so a32 is the inconsistent element as there are six elements equally and slightly
more than zero. Then step7 is no longer needed. We can also confirm whether a32

has problem using the method of order reduction. For instance, removing third
row and third column, or second row and second column, we have the following
induced matrix:

0

B
B
B
B
B
B
B
B
B
@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
A

Increase a32 to 4 from 1/4, and a23 to 1/4 in the original pair-wise matrix, then the
induced matrix C becomes a zero matrix as follows, and the modified comparison
matrix passed the test with C.R. D 0 < 0.1.

0

B
B
B
B
B
B
B
B
B
B
B
@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
A

The identified inconsistent element is the same as one in (Iida 2009). However,
in Iida’s method, decision maker has to calculate the number of circular triads
with a tie in pair-wise matrix, and eliminate ties from pair-wise matrix to identify
the inconsistent element to find the matrix which has a circular triad with lower
order and identify the inconsistent element. This identification process is relatively
complicated compared with our method.

Example 3.4. In order to demonstrate how the proposed method could identify more
than two elements in pair-wise matrix with high order, we generated the following
pair-wise matrix by adding one row and one column with random value to the
comparison matrix in the second example. The new comparison matrix also denoted
by A with �max D 11:124 and C:R: D 0:2328 > 0:1.
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A D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 2 1=2 2 1=2 2 1=2 2 1=3

1=2 1 4 1 1=4 1 1=4 1 1=4

2 1=4 1 4 1 4 1 4 1=7

1=2 1 1=4 1 1=4 1 1=4 1 1=6

2 4 1 4 1 4 1 4 6

1=2 1 1=4 1 1=4 1 1=4 1 1=3

2 4 1 4 1 4 1 4 7

1=2 1 1=4 1 1=4 1 1=4 1 1=2

3 4 7 6 1=6 3 1=7 2 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

According to the proposed inconsistency identification method, we have:

Step 1. The induced matrix C D A 	 A � 9 	 A becomes

0

B
B
B
B
B
B
B
B
B
B
@

0 �2:5471 9:3333 0 �0:4444 �1:0000 �0:4524 �1:3333 6:7381

7:7500 0 �24:7500 15:5000 3:5417 14:7500 3:5357 14:5000 3:2381

�3:4464 22:8214 0 �6:8929 �1:9137 �7:3214 �1:9171 �7:4643 16:7292

0 �1:2708 4:6667 0 �0:2222 �0:5000 �0:2262 �0:6667 3:3690

16:0000 16:2500 56:0000 32:0000 0 14:0000 �0:1429 8:0000 �29:1905

0:5000 �0:6042 5:8333 1:0000 �0:1944 0 �0:2024 �0:3333 2:0357

19:0000 20:2500 63:0000 38:0000 0:1667 17:0000 0 10:0000 �37:1905

1:0000 0:0625 7:0000 2:0000 �0:1667 0:5000 �0:1786 0 0:7024

1:1190 �8:0119 �28:4405 2:2381 11:2262 26:2381 11:4167 34:2381 0

1

C
C
C
C
C
C
C
C
C
C
A

Step 2. The largest value, 63, is located at seventh row and third column.
Step 3. The vectors are

r7 D �

2 4 1 4 1 4 1 4 7
�

and

cT
3 D �

0:5 4 1 0:25 1 0:25 1 0:25 7
�

Step 4. The scalar product b is

b D r7 � cT
3 D �

1 16 1 1 1 1 1 1 49
�

Step 5. The bias identifying vector f is

f D b � a73 D �

0 15 0 0 0 0 0 0 48
�

Step 6. In vectors f and b, we find that all the elements are corresponding to a73

except two values are larger than a73. That is, 49 D a79a93, and 16 D a72a23. So
the decision makers should change the value of a23; a72;a79; and a93.

Furthermore, c23 D �24:75 < 0 and c72 D 20:25 > 0. It indicates that a23 is
too large and a72 is too small, so a23 should be decreased. Besides, we get c79 D
�37:195 < 0 and c93 D �28:4405 < 0 from the induced matrix C . Hence, a79 and
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Table 3.2 The identification
process of a23; a72; a79;

and a93

Remove Test Might problem Good Problem

A3

p
a23; a93 a72; a79

A2 � a79; a93 a79 a93

A7 � a23; a93

A9 � a23; a72 a72 a23

a93 may be too large. In Table 3.2, method of matrix order reduction is applied to
identify the inconsistency in a23; a72;a79; and a93 for their corresponding attributes
A2, A3, A7 and A9 respectively.

The identification process is as follows:

Sub-step 1. Remove A3, the order reduced matrix passed test, so a72 and a79 are
consistent while a23 and a93 might have problem.

Sub-step 2. Remove A2, the order reduced matrix could not pass test, so a79; a93

might be problematic while a79 has been identified to be consistent in Sub-step
1, so a93 is one of the inconsistent elements.

Sub-step 3. Remove A7, the order reduced matrix could not pass the test, so a23; a93

might be problematic while a93 has been identified to be inconsistent in Sub-step
2, so continue to check a23.

Sub-step 4. Remove A9, the order reduced matrix could not pass the test, so a23; a72

might be problematic while a72 has been identified to be consistent in Sub-step
1. Hence, the inconsistent element is a23.

Therefore, both a23 and a93 are the inconsistent elements which have been
identified simultaneously.

Adjusting Steps:

a79 D 7 is consistent while a79a93 D 49, so we should decrease a93 and let a79a93

as close to a73 D 1 as possible. Let us assume a93 D 1
7
, and a39 D 7. Likewise,

a72 D 4 is consistent and a72a23 D 16, so a23 should be decreased and let a72a23 as
close to a73 D 1 as possible. Assume a23 D 1

4
, and a32 D 4. Replace the four values

from the original comparison matrix A, then the �max is 9:8491 while the C.R. is
0.0732 less than 0.1, so the consistency test passed, and no correction of judgments
is needed. However, as the C.R. is close to 0.1, some elements are still large in the
induced matrix. Thus, the decision maker can continue to adjust the value using the
proposed method until he gets satisfied result.

Example 3.5. The following 8 � 8 pair-wise comparison matrix A was first
introduced in (Xu and Wei 1999) as an example of an inconsistent pair-wise
comparison matrix for the selection of a trucking company, which is based on the
performance of the following eight attributes including punctuality, delivery time,
temperature control, track and trace, error rate, service reputation, damage loss,
and GPS features. This pair-wise matrix is inconsistent with �max D 9:669 and
C.R D 0.169 > 0.1. This example was also used by Saaty (2003) as an example
to describe the method embedded in the Expert Choice Software detecting the
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inconsistencies and also by Cao et al (2008) as an inconsistent pair-wise comparison
matrix to test their proposed heuristic approach. We also use this public-domain
example to illustrate some special cases in Method for adjusting aij .

A D

2

6
6
6
6
6
6
6
6
6
6
6
4

1 5 3 7 6 6 1=3 1=4

1=5 1 1=3 5 3 3 1=5 1=7

1=3 3 1 6 3 4 6 1=5

1=7 1=5 1=6 1 1=3 1=4 1=7 1=8

1=6 1=3 1=3 3 1 1=2 1=5 1=6

1=6 1=3 1=4 4 2 1 1=5 1=6

3 5 1=6 7 5 5 1 1=2

4 7 5 8 6 6 2 1

3

7
7
7
7
7
7
7
7
7
7
7
5

According to the proposed method, we have:

Step 1. The induced matrix C D A 	 A � 8 	 A is

0

B
B
B
B
B
B
B
B
@

0 �12:1833 �10:3611 47:3333 5:5000 �1:0833 20:9000 2:8560

1:7968 0 1:9310 �3:0571 �6:2762 �10:8595 3:0667 0:9845

19:4238 18:6000 0 49:9333 34:2000 21:20000 �32:6317 4:2286

0:2642 1:7980 0:3177 0 1:9214 2:2548 0:5971 �0:4837

0:9563 2:7667 0:1028 �8:4333 0 3:0833 1:7841 �0:2857

1:3214 3:2167 1:3111 �10:9333 �5:9167 0 1:7270 0:0726

�12:2778 �6:2667 16:2500 44:0000 18:8333 10:9167 0 1:0393

�11:7905 8:6000 �10:50000 101:0000 48:6667 44:0000 24:2762 0

1

C
C
C
C
C
C
C
C
A

Step 2. The largest value, 101, is located at eight row and fourth column.
Step 3. The vectors are

r8 D �

4 7 5 8 6 6 2 1
�

and

cT
4 D �

7 5 6 1 3 4 7 8
�

Step 4. The scalar product b is

b D r8 � cT
4 D �

28 35 30 8 18 24 14 8
�

Step 5. The bias identifying vector f is

f D b � a84 D �

20 27 22 0 10 16 6 0
�

Step 6. According to the Method for adjusting aij , there are only two zeroes where
the location is fourth and eighth in bias vector f , and others are positive, so a84 is
too small. However, the value of a84 is 8, which is already close to the maximum
scale 9, and the other values are larger than zero, which cannot be decreased by
increasing the value of a84. In such case, we can remove the fourth attribute or the
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eighth attribute to test the consistency using the order reduction method. Since
the consistency test failed, these two attributes might be consistent. In this case,
clearly, the eighth attribute, GPS features with large value are more important
than the fourth attribute, track and trace, with small value for the selection of a
trucking company.

Therefore, continuing the identification process on the second largest outlier,
49.9333, which is located at third row and fourth column, and repeating Step 3
to Step 6:

Step 3’. The vectors are

r3 D �

0:3333 3 1 6 3 4 6 2
�

and

cT
4 D �

7 5 6 1 3 4 7 8
�

Step 4’. The scalar product b is

b D r3 � cT
4 D �

2:3334 15 6 6 9 16 42 1:6
�

Step 5’. The bias identifying vector f is

f D b � a34 D ��3:6667 9 0 0 3 10 36 �4:4
�

Step 6’. In vectors f and b, most of the elements are around zero, while the number
of 36 in vector f is far away zero, which is corresponding to 42 (a37a74) in vector
b. Hence, the decision makers should check the values of a37 and a74.

Furthermore, c37 D �32:6317 < 0 and c74 D 44 > 0. It indicates that a37 is too
large and a74 is too small, so the value of a37 should be decreased. The inconsistent
element in the pair-wise comparison matrix has been identified.

In order to validate that the inconsistent element is a37, we removed third attribute
and seventh attribute respectively to test the consistency. Both consistency tests
passed. Therefore, the inconsistent element is a37. Since a37a74 is supposed to be
equal to 6, hence we can get a37 D 6=a74 D 6=7 D 0:86. Either 0.5 or 1 in
the 9-point scale could be selected as the optimal value of this inconsistent entry.
Assume a37 D 1

2
, and a73 D 2. Replace these two values in the original pair-wise

comparison matrix with the above values and test the consistency, the consistency
test passed with �max D 8:8117 and C:R: D 0:0828 < 0:1.

Comparisons have been made among the proposed method, Xu and Wei’ method,
Saaty’s method and Cao’s et al method. In Xu and Wei (1999), a consistent
matrix by an auto-adaptive process based on the original inconsistent matrix was
proposed instead of revising single elements. For instance, the element aij in the

original inconsistent comparison matrix is replaced by bij D a�
ij

�

wi =wj

�1��
, and

0 < � < 1, where wi and wj are the priority vector derived from the original
inconsistent matrix. Thus, a new consistent matrix B D �

bij

�

was generated by
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adjusting the parameter � repeatedly, and the decision makers use this new matrix
as a reference for revising the original inconsistent matrix instead of the original
comparison matrix. Therefore, Xu and Wei’s method lost some original comparison
information and made some perturbations when adjusting the parameter �. Clearly,
the more bias values of elements are zeros or close to zero, the more original matrix
information will be preserved in the bias matrix between the modified comparison
matrix and the original comparison matrix. The bias matrix can be calculated by
subtracting the modified comparison matrix from the original comparison matrix.
For example, in Xu and Wei’s (1999) final modified comparison matrix, when the
parameter � D 0:98, the bias matrix becomes:

0

B
B
B
B
B
B
B
B
B
B
B
@

0 0:4760 0:6610 �0:5230 0:1120 0:3140 �0:0917 �0:0420

�0:0210 0 0:0073 0:4840 0:3290 0:4200 �0:0220 �0:0041

�0:0937 �0:0670 0 �0:7490 �0:4600 �0:1880 1:8450 �0:0490

0:0099 �0:0210 0:0187 0 �0:0397 �0:0370 0:0089 0:0210

�0:0033 �0:0407 0:0443 0:3190 0 �0:0610 0:0030 0:0197

�0:0093 �0:0547 �0:0160 0:5210 0:2160 0 �0:0040 0:137

0:6460 0:5030 �0:0743 �0:4790 �0:0730 0:1010 0 �0:0010

0:5810 0:2140 0:9760 �1:6240 �0:7830 �0:5510 0:0040 0

1

C
C
C
C
C
C
C
C
C
C
C
A

In the bias matrix, there are some relatively larger perturbations such as a37, a84,
a83, a34, a14 and etc. Many values in the original matrix have been changed. For
example, the value of a84 is 12:339 and 9:624 for � D 0:5 and � D 0:98 respectively
in the modified pair-wise comparison matrix, which are higher than the maximum
scale 9 (Saaty 1980).

Likewise, in Cao et al (2008), the consistent matrix based on the original
inconsistent matrix is automatically generated instead of revising single element.
The deviation of the generated pair-wise comparison information in inconsistent
matrix is expressed as a deviation matrix. The consistency ratio is improved by an
iterative process which adjusts the deviation matrix. Although the consistency test
passed with C:R: D 0:0997 < 0:1, and they illustrated that their proposed method
could retain more original comparison information than Xu and Wei’s method did,
their method also made some perturbations when adjusting the parameter � . The
following bias matrix is calculated by subtracting the modified comparison matrix
when the parameter � D 0:98 from the original comparison matrix.

0

B
B
B
B
B
B
B
B
B
B
B
@

0 0:5588 0:6318 �0:6743 0:1441 0:3921 �0:0868 �0:0468

�0:0252 0 0:0123 0:5776 0:3825 0:4608 �0:0268 �0:0057

�0:0890 �0:1151 0 �0:9149 �0:5351 �0:2774 1:4895 �0:0487

0:0126 �0:0261 0:0504 0 �0:0472 �0:0427 0:0116 0:0220

�0:0041 �0:0487 0:0162 0:3772 0 �0:0722 0:0040 0:0223

�0:0116 �0:0605 0:0285 0:5834 0:2522 0 �0:0055 0:0173

0:6196 0:5901 �0:0550 �0:6136 �0:1012 0:1339 0 �0:0004

0:6311 0:2707 0:9785 �1:7130 �0:9235 �0:6949 0:0016 0

1

C
C
C
C
C
C
C
C
C
C
C
A
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In the above bias matrix, there are also some relatively larger perturbations such
as a84, a37, a83, a85, a34 and etc. Besides, some values of elements in the original
matrix had been changed undesirably. For instance, a84 D 11:2647 for � D 0:5, and
a84 D 9:7130 for � D 0:98 in the modified pair-wise comparison matrix, which are
higher than the maximum scale 9 (Saaty 1980).

In addition to the above two methods, a similar matrix "ij D aij

�

wj =wi

�

is
constructed to identify the most inconsistent element in the inconsistency identifica-
tion method embedded of the AHP software Expert Choice. The above comparison
matrix A was also introduced by Saaty (2003) as an example (Saaty’s method in
the following). The inconsistent element a37 is identified by Saaty’s method, and
replaced with the value of wi =wj D 1=2. Compared with the other two methods,
Saaty’s method is the easier to use as it is based on the ratio of priorities and
designed for the Perron Eigenvalue Method (EM) (Saaty 1977) and AHP. However,
the ‘precise’ number recommended by Saaty’s method is aij D !i =!j , which is an
approximated value since the !i and !j can be calculated by the different method
to derive priority vectors. In the example described by Saaty (2003), the method
gives the ‘precise’ value 1/2 by approximating the a37 D !3=!7 D 1=2:18 � 1=2

to adjust the a37 and a73. When we select the following pairs, (1,1), (1/3,3), (1/4,4),
(1/5,5), (1/6,6) and (1/7,7) to approximate the pairs (a37, a73), we get the following
CRs: 0.0886,0.084,0.086,0.0897,0.093, 0.097, respectively. All consistency ratios
are less than 0.1, the priority vector derived by replacing one of the pairs of values
are acceptable in the AHP, however, the result will be unacceptable in the ANP.
The ‘precise’ value is no longer precise in the ANP, and it is necessary to show the
modification direction and provide some optimal values for the decision makers.

To summarize, the formula used by Xu and Wei’s method, Saaty’s method

and Cao’s et al method are "ij D aij

�

wj =wi

�

, bij D a�
ij

�

wi =wj

�1��
and

dij
0 D �aij =.wi =wj / C .1 � �/, respectively. All three methods are based on the

priority vector ratios, which are calculated by the inconsistent comparison matrix.
As reviewed in introductory part, different methods, other than the EM, have been
proposed to derive a priority vector with a given positive reciprocal matrix A.
Different methods may yield different vectors (!i , !j ). The inconsistent entries
and the approximated value !i =!j of the identified inconsistent entry aij may be
different when different methods are selected to calculate !i , !j .

In the proposed method, the inconsistent element a37 is identified by the induced
matrix C, which is only based on the original comparison matrix A. The decision
maker only needs to adjust a37 and a73 without changing other elements. After
identifying the inconsistent entry, one can use any of the known methods to derive
the priority vector. It is more practical and keeps most of the information provided
by the original comparison matrix. For instance, as identified above, either 0.5 or
1 in the 9-point scale could be selected as the optimal value of this inconsistent
entry a37. Let a37 D 1

2
, and a73 D 2, and the modified comparison matrix could

be generated by replacing these two values in the original comparison matrix. Thus,
the bias matrix becomes:
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0

B
B
B
B
B
B
B
B
B
B
B
@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 5:5000 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 �1:8333 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
A

All values provided by experts in the original comparison matrix have been
retained except the inconsistent elements a37 and a73. Furthermore, the proposed
method does not violate the scale [1, 9], needs fewer computations than Xu and
Wei’ method and Cao’s et al method, and also preserve more original comparison
information than these two methods. Compare with Saaty’s method, the proposed
method is based on only the original comparison matrix A instead of the ratio of
priorities. Any of the known methods, such as EM, DLSM, WLSM, LLSM/GMS,
and GPM, could be applied to derive the priority vectors for the revised reciprocal
comparison matrix by the proposed method and the same inconsistent entries
will always be identified. Furthermore, the proposed method can also show the
modification direction and provide the optimal values.

3.3.2 Illustrative Examples for Fast Inconsistency
Identification and Adjustment Method

The Example 3.2 and Example 3.3 introduced above are used in this study as
Example 3.6 and Example 3.7, respectively, to demonstrate the proposed fast
inconsistency identification method.

Example 3.6. The induced bias matrix C, computed by the proposed IBM method
in above Example 3.2 is,

0

B
B
@

0 �1:9688 �3:9375 15:7500

31:5000 0 0 �3:9375

15:7500 0 0 �1:9688

�15:7500 15:7500 31:5000 0

1

C
C
A

It can easily be observed that there are only two non-zero rows (first and fourth),
and two non-zero columns (first and fourth) in the IBM, which is identical to the
formula (3.53). In addition, there is only one sign different from those elements
whether located at first and fourth rows or columns. Therefore, according to the
principle of above proposed fast inconsistency identification method, the inconsis-
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tent elements are a14 and a41. Besides, since c14 D 15:75 > 0, a14 is too small and
should be increased. According to the revising formula (3.55) of aip , we get

a14 D 1

4 � 2

3X

kD2

a1kak4 D 1

2
.2 � 4 C 4 � 2/ D 8; a41 D 1

a14

D 1

8

The identified inconsistent element and its revised result are the same as shown
in above Example 3.2.

Example 3.7. The induced bias matrix C, computed by the proposed IBMM in
above Example 3.3, is showed below.

0

B
B
B
B
B
B
B
B
B
B
B
@

0 �1:8750 7:5000 0 0 0 0 0

7:5000 0 �22:5000 15:0000 3:7500 15:0000 3:7500 15:0000

�1:8750 22:5000 0 �3:7500 �0:9375 �3:7500 �0:9375 �3:7500

0 �0:9375 3:7500 0 0 0 0 0

0 �3:7500 15:0000 0 0 0 0 0

0 �0:9375 3:7500 0 0 0 0 0

0 �3:7500 15:0000 0 0 0 0 0

0 �0:9375 3:7500 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
A

It can easily be observed that there are only two non-zero rows (second and third),
and two non-zero columns (second and third) in above IBM. Likewise, there is only
one sign different from those elements whether located at second and third rows or
columns. Both are identical to the formula (3.53). Therefore, according to the above
fast identification method, the inconsistent elements are a23 and a32. Besides, since
c23 D �22:5 < 0 and c32 D 22:5 > 0, we can get that a23 is too large, and a32 is
too small.

Since c23 D
8P

kD1

a2kak3 � 8a23 D
8P

kD1;¤2;3

a2kak3 C a22a23 C a23a33 � 8a23,

assume c23 D 0, a23 D 1
6

8P

kD1;¤2;3

a2kak3 D 1
6

�
1
2

� 1
2

C 1 � 1
4

C 1
4

� 1 C 1 � 1
4

C 1
4

�1 C 1 � 1
4

� D 1
4
, and c32 D 4. For simplicity, since a23 is inconsistent, assume

a2kak3 D a0
23 , .k D 1; 4; 5; 6; 7; 8/, we can use a0

23 to be the value of a23 in order to
let it be consistent. Clearly, any value of pair of a2kak3 D a0

23 .k D 1; 4; 5; 6; 7; 8/

is 1
4
, which is the same as shown in above Example 3.3.

The above examples show that the inconsistent elements can be determined by
observing and analyzing the non-zero row (column), and sign identification of the
bias elements in the IBM C instead of following the above proposed seven steps of
inconsistency identification. Therefore, the proposed method is simpler and faster
than the previous method for the special case with only one pair of inconsistent
elements in the original PCM.
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Chapter 4
IBMM for Missing Data Estimation

In Chap. 3, the induced bias matrix is proposed to identify the inconsistent elements
in a complete pairwise comparison matrix (PCM). Besides inconsistency, a PCM
may be incomplete due to limited expertise or unwillingness to judge. For an
incomplete pairwise comparison matrix (IPCM), the missing values must first be
estimated in order for the IPCM to be useful. The revised PCM needs to pass the
consistency test. For this purpose, we have extended the IBMM to estimate the
missing values in an IPCM (Ergu et al. 2011c). The revised PCM with the estimated
values by IBMM is shown to satisfy the consistency requirement. In this Chapter,
the details of IBMM for missing data estimation in AHP/ANP are comprehensively
addressed.

4.1 Basics of the IBMM for Missing Data Estimation

For an incomplete pairwise comparison matrix (IPCM) with some missing values,
the corresponding revised PCM should also follow the Theorems and Corollaries of
IBMM, that is, if we fill in the missing values with the unknown variables (denoted
by x, 1/x; y, 1/y; z, 1/z; : : : ), then the revised ‘complete’ pairwise comparison (RCM)
should also follow the Theorems of IBMM previously stated in Chap. 3. Therefore,
the proposed IBMM method can not only estimate the corresponding missing
values, but also maintain the revised pairwise comparison matrix consistency.

In an incomplete pairwise comparison matrix (IPCM), there are 2p unknown
entries if p comparisons are missing due to its reciprocity. To estimate the missing
entries in an IPCM, firstly fill in the missing entries with the variables denoted by
x, y, z etc. and the corresponding reciprocal values with unknown variables to get
the revised ‘complete’ PCM, also denoted by A, then the following corresponding
theorem and corollaries can be derived based on the Theorem 3.1, Corollary 3.1,
Corollary 3.2 and Corollary 3.3:

G. Kou et al., Data Processing for the AHP/ANP, Quantitative Management 1,
DOI 10.1007/978-3-642-29213-2 4, © Springer-Verlag Berlin Heidelberg 2013

65

http://dx.doi.org/10.1007/978-3-642-29213-2_3
http://dx.doi.org/10.1007/978-3-642-29213-2_3


66 4 IBMM for Missing Data Estimation

Theorem 4.1. The induced bias matrix C D AA�nA should be a zero matrix if the
revised pairwise comparison matrix (PCM) A of the IPCM is perfectly consistent.

Corollary 4.1. The induced bias matrix C D AA � nA should be as close as
possible to zero matrix if the revised pairwise comparison matrix (PCM) A of the
IPCM is approximately consistent.

Corollary 4.2. The induced bias matrix C D AA�nA must not be a zero matrix if
the revised pairwise comparison matrix (PCM) A of the IPCM is inconsistent, and
there must be some inconsistent entries in the induced bias matrix C deviating far
away from zero

Corollary 4.3. All entries in the main diagonal of the induced bias matrix C D
AA � nA should be zeroes as long as the revised pairwise comparison matrix
(PCM) A of the incomplete PCM the comparison matrix is satisfied with the
reciprocal condition no matter it is consistent or not.

Based on the above Theorem and Corollaries, we can derive the following
theorem.

The Theorem of the Induced Bias Matrix Model (IBMM):

The induced bias matrix C D AA � nA should be equal (or close) to a zero matrix
if the revised PCM is perfectly (or approximately) consistent. That is

C D AA � nA

( D 0 if aikakj D aij

� 0 if aikakj � aij

where A is the revised ‘complete’ PCM after replacing the missing values in the
IPCM with unknown variables x, 1/x, y, 1/y, z, 1/z, etc. The n denotes the order of
PCM.

It can be seen from the Theorem of IBMM for estimating the missing values, the
following two conditions hold:

1. All the entries of the induced bias matrix C D AA � nA should be equal to
zeroes if the revised pairwise comparison matrix A is perfectly consistent.

2. Most of the entries of the induced bias matrix C D AA � nA should be close to
zeroes if the revised pairwise comparison matrix A is approximately consistent.

Thus, for the revised ‘complete’ PCM, the unknown variables can be estimated
by minimizing the values of the induced bias matrix, namely, solving the corre-
sponding equations generated from the induced bias matrix. The steps necessary to
estimate the missing values are presented next.

4.2 The Processes of Estimating Missing Data by the IBMM

Based on the Theorem of IBMM aforementioned, to make the revised pairwise
comparison matrix completely consistent or approximately consistent, we need to
minimize the bias values with unknown variables of the induced bias matrix C to
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Minimize all entries in the IBM, namely
Let them be zeroes 

Incomplete PCM
with Missing Values

Revised PCM 
with Unknown Variables

The Induced Bias Matrix C
(IBM)

Replace the missing values
with unknown variables x,1/x; y,1/y; …

Construct Model
nAAAC −=

Equation 1 Equation 2 Equation 3 …… Equation 2
n(n−1)

Replace the missing values
with the optimal values
and test its consistency

Solve or Optimize the equations

Obtain the optimal values
for missing judgments

Average the Findings

Obtain revised
complete PCM

Fig. 4.1 The IBMM for estimating the missing entries in IPCM

be zeroes or close to zeroes, then there are some corresponding systems of linear or
nonlinear equations that hold. Solving the system of linear or nonlinear equations
generated from the upper triangular matrix or the lower triangular matrix to find
or estimate the missing value(s) by averaging all solutions of the equations. Hence,
how to estimate the missing values while keeping the revised PCM consistency
becomes how to solve or optimize the corresponding systems of linear or nonlinear
equations.

The structure of the proposed model (IBMM) for estimating the missing data in
AHP/ANP is showed in Fig. 4.1.

Therefore, the steps of the IBMM for estimating the missing values can be
summarized as:

Step 1: Replace the missing values with unknown variables x,1/x; y,1/y; z,1/z etc.
for the IRPCM and get the revised ‘complete’ PCM A.

Step 2: Construct the proposed model C D AA � nA and calculate the induced
bias matrix C .

Step 3: Minimize all bias entries of the induced bias matrix C, that is, let all entries
with unknown variables be (equal to) zeros, and get n .n � 1/ =2 number of
equations.

Step 4: Solve these linear or nonlinear equations.
Step 5: Average all solutions in order to keep the global consistency and find the

optimal values of variables.
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Step 6: Replace the missing values with the optimal values and test the consistency
for the revised PCM in order to maintain its consistency.

Before some numerical examples are used to illustrate the proposed IBMM for
estimating the missing values, the general incomplete PCM in order three is first
used to prove the correctness of the proposed method next.

4.3 Proofs of the IBMM for IPCM in Order Three

The theoretical proofs of the proposed IBMM for inconsistency identification have
been made in Chap. 3. In addition, the basics of IBMM for estimating the missing
data in AHP/ANP have also been proposed above. To demonstrate this model,
without loss of generality, let us first analyze a general IPCM in two cases:

Case-1: Introduce one missing comparison to the IPCM, without loss of generality,
assume a12 and a21 is the missing values. Then follow the above steps of the
IBMM.

Step 1: Let a12 D 1
x

, a21 D x, then the revised pairwise comparison matrix (PCM)
A with unknown variable x is

0

@

a11
1
x

a13

x a22 a23

a31 a32 a33

1

A (4.1)

Step 2: Construct the proposed model C D AA � nA, and then the induced bias
matrix C is
 

0
a11

x
C a22

x
C a13a32 � 3

x
a11a13 C a23

x
C a13a33 � 3a13

xa11 C xa22 C a23a31 � 3x 0 xa13 C a22a23 C a23a33 � 3a23

a31a11 C xa32 C a33a31 � 3a31
a31

x
C a32a22 C a33a32 � 3a32 0

!

(4.2)

Step 3: Minimize all bias entries of the induced bias matrix C, that is, let all entries
with unknown variables equal to zeros, and get six equations:
The system of linear equations generated from the upper triangular matrix:

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

a11

x
C a22

x
C ya32 � 3

x
D 0

ya11 C a23

x
C ya33 � 3y D 0

xy C a22a23 C a32a33 � 3a23 D 0

(4.3)

http://dx.doi.org/10.1007/978-3-642-29213-2_3
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The system of linear equations generated from the lower triangular matrix is

8

ˆ̂

<̂

ˆ̂

:̂

xa11 C xa22 C a23a31 � 3x D 0

a31a11 C xa32 C a33a31 � 3a31 D 0

a31

x
C a32a22 C a33a32 � 3a32 D 0

(4.4)

Step 4: Solve one of these two systems of linear equations to find the unknown
variable x. In this example, the solution of the variable x can be found by solving
only one of the equations. For instance, solve the third equation in (4.3) or the
second equation in (4.4) in above two systems of linear equations (because there
is only one missing value) and we can find

x D a23a31 D 1

a32

a31 D a23

1

a13

D a21 (4.5)

The result is consistent with the above assumption, which is also accordance with
the consistency condition aikakj D aij for all i , j and k.
Because the solution is singular and consistent with the assumption, hence, the
Step 5 and Step 6 are skipped.

Case-2: Introduce two missing comparisons to the general 3 � 3 IPCM A, without
loss of generality, assume a12 and a21, a13 and a31 are the missing values. Then
follow the above steps of the IBMM.

Step 1: Assume a12 D 1
x

, a21 D x and a13 D y, a31 D 1
y

, then the revised
reciprocal pairwise comparison matrix (RPCM) A with unknown variables
x and y is

0

B
@

a11
1
x

y

x a22 a23
1
y

a32 a33

1

C
A (4.6)

Step 2: Construct the model C D AA � nA, and then the induced bias matrix C is

C D
0

B
@

0 a11
x

C a22
x

C ya32 � 3
x

ya11 C a23
x

C ya33 � 3y

xa11 C xa22 C a23
y � 3x 0 xy C a22a23 C a32a33 � 3a23

a11
y

C xa32 C a33
y

� 3
y

1
xy

C a32a22 C a33a32 � 3a32 0

1

C
A

Step 3: Minimize all bias entries of the induced bias matrix C, that is, let all entries
with unknown variables be (equal to) zeros, and then the following equations
hold:
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System of equations generated from the upper triangular entries

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

a11

x
C a22

x
C ya32 � 3

x
D 0

ya11 C a23

x
C ya33 � 3y D 0

xy C a22a23 C a32a33 � 3a23 D 0

(4.7)

System of equations generated from the lower triangular entries

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

xa11 C xa22 C a23

y
� 3x D 0

a11

y
C xa32 C a33

y
� 3

y
D 0

1

xy
C a32a22 C a33a32 � 3a32 D 0

(4.8)

Step 4: Solve one of the above two systems of equations, then the relationship of
the variables (missing values) x and y can be found.

xy D 1

a32

D a23 (4.9)

If x D a21, then y D a23

a21
D a12a23 D a13. The result is consistent with above

assumption.

In an n � n reciprocal PCM, only n(n�1)/2 comparisons are required to complete
the reciprocal PCM in the upper diagonal triangular matrix. The entries in the
lower diagonal triangular matrix are the reciprocal values of the corresponding
entries given by experts in the upper diagonal triangular matrix. In order to make a
valid decision, the n(n�1)/ comparisons should be completed for an n-by-n PCM.
If the PCM contains some missing comparisons, obviously, the less the missing
comparisons are, the more reliable the decision will be. An n-by-n incomplete
reciprocal PCM contains 2p missing entries if p comparisons are missing in the
IPCM. If p > n(n�1)/4, the explicit solutions cannot be found for the proposed
IBMM and the missing values cannot be estimated by the IBMM. In this example,
as n D 3, we need three valid comparisons. However, there is only one valid
comparison for PCM, and two required comparisons are missing. This means the
information provided by experts is not enough to make a valid decision because the
number of valid comparisons is less than the number of the missing comparisons,
which is already more than the required number of the IBMM to find explicit
solution (p � n(n�1)/4 D 1.5), hence, the IBMM could not estimate the missing
values in the PCM.
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4.4 Illustrative Examples

4.4.1 Illustrative Examples in Order Three

In the above section, we have proved two cases for a general 3 � 3 incomplete
PCM A with one and two missing comparisons respectively. In order to illustrate
the above two cases, two corresponding concrete numerical incomplete 3 � 3 PCM
are introduced below.

Example 4.1. Assume a complete reciprocal pairwise comparison matrix with
.�max D 3/ and CR D 0 be

0

@

1 3 6
1
3

1 2
1
6

1
2

1

1

A

Then assume the a23 D 2 is the missing value, namely the corresponding
incomplete PCM is

0

@

1 3 6
1
3

1 �
1
6

� 1

1

A

Then follow the steps of the IBMM to find the missing value.

Step 1: Assume a23 D x, a32 D 1
x

, then the revised PCM A with unknown variables
x becomes

0

@

1 3 6
1
3

1 x
1
6

1
x

1

1

A

Step 2: The induced bias matrix C D AA � nA is

0

B
@

0 �3 C 6
x

�6 C 3x

� 1
3

C x
6

0 2 � x

� 1
6

C 1
3x

1
2

� 1
x

0

1

C
A

Step 3: Minimize all bias entries of the induced bias matrix C, that is, let all entries
with unknown variables equal to zeros, and then the following equations hold:
System of equations generated from the upper triangular entries

8

<̂

:̂

�3 C 6
x

D 0

�6 C 3x D 0

2 � x D 0
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System of equations generated from the lower triangular entries
8

<̂

:̂

� 1
3

C x
6

D 0

� 1
6

C 1
3x

D 0
1
2

� 1
x

D 0

Step 4: Solve one of the above two systems of equations, then the variable x can be
found.

x D 2

The result is consistent with the missing value. Therefore, Step 5 and Step 6 are
skipped.

Example 4.2. Introduce two missing comparisons to the above given 3 � 3 matrix,
then it contains four missing values. Assume the a13 D 6 and a23 D 2 are the two
missing comparisons, namely, the corresponding incomplete PCM is

0

@

1 3 �
1
3

1 �
� � 1

1

A

Then follow the steps of the IBMM to estimate the missing values.

Step 1: Assume a13 D y; a31 D 1
y

, and a23 D x; a31 D 1
x

, then the revised pairwise
comparison matrix (PCM) A with unknown variables x and y becomes

0

B
@

1 3 y
1
3

1 x
1
y

1
x

1

1

C
A

Step 2: The induced bias matrix C D AA � nA is

0

B
@

0 �3 C y

x
�y C 3x

� 1
3

C x
y

0
y

3
� x

� 1
y

C 1
3x

3
y

� 1
x

0

1

C
A

Step 3: Minimize all bias entries of the induced bias matrix C, that is, let all entries
with unknown variables be equal to zeros, and then the following equations hold:
System of equations generated from the upper triangular entries

8

<

:

�3 C y

x
D 0

�y C 3x D 0
y

3
� x D 0
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System of equations generated from the lower triangular entries

8

<̂

:̂

� 1
3

C x
y

D 0

� 1
y

C 1
3x

D 0
3
y

� 1
x

D 0

Step 4: Solve one of the above two systems of equations, then the relationship of
two unknown variables x and y can be solved below:

y D 3x

If x D 2, then y D 6. The result is consistent with the missing value assumed
above. Therefore, Step 5 and Step 6 are skipped here. It also shows that the PCM
is becoming an artificial PCM if there are not enough valid entries in PCM.

4.4.2 Illustrative Examples in Order Four

In order to expand the proposed IBMM to the incomplete PCM with higher order,
the following example is used to illustrate the proposed IBMM.

Example 4.3. Assume a 4 � 4 complete PCM with �max D 4:0076 and
CR D 0.00284 be

0

B
B
@

1 1
9

1
2

1
5

9 1 5 2

2 1
5

1 1
2

5 1
2

2 1

1

C
C
A

Without loss of generality, let us assume the a13 D 1
2
; a31 D 2 to be the missing

values, namely, the corresponding incomplete PCM is:

0

B
B
@

1 1
9

� 1
5

9 1 5 2

� 1
5

1 1
2

5 1
2

2 1

1

C
C
A

Introduce the IBMM to estimate the missing values.

Step 1: Assume a13 D x, a13 D 1
x

then the revised pairwise comparison matrix
(PCM) A with unknown variables x becomes

0

B
B
@

1 1
9

x 1
5

9 1 5 2
1
x

1
5

1 1
2

5 1
2

2 1

1

C
C
A
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Step 2: The induced bias matrix C D AA � nA is

0

B
B
B
@

0 � 11
90

C x
5

�2x C 43
45

� 8
45

C x
2

�8 C 5
x

0 9x � 6 3
10

� 2
x

C 43
10

1
9x

� 3
20

0 1
5x

� 3
5

� 11
2

C 2
x

� 2
45

5x � 3
2

0

1

C
C
C
A

Step 3: Minimize all bias entries of the induced bias matrix C, that is, let all entries
with unknown variables be equal to zeros, and then the following equations hold:
System of equations generated from the upper triangular entries: 1st Column, 2rd

Column and 3th Column respectively.

�

�11

90
C x

5
D 0

� �2x C 43
45

D 0

9x � 6 D 0

� � 8
45

C x
2

1
5x

� 3
5

System of equations generated from the lower triangular entries: first Column,
second Column and third Column respectively.

8

<̂

:̂

�8 C 5
x

D 0

� 2
x

C 43
10

D 0

� 11
2

C 2
x

D 0

�
1

9x
� 3

20
D 0

�

5x � 3

2
D 0

Step 4: Solve one of the above two systems of equations, then the solutions of
the equations can be found. To compare both solutions, here, two systems of
equations are all solved and the corresponding solutions can be found as follows:
The first solutions of the upper triangular equations are

fx1 D 0:6111

�
x2 D 0:4778

x3 D 0:6667

�
x4 D 0:3556

x5 D 0:3333

where xi denotes the corresponding solution of the equations in the upper
triangular matrix.
The second solutions of the lower triangular equations are

8

<

:

x21 D 0:6250

x31 D 0:4651

x41 D 0:3636

fx32 D 0:7407 fx43 D 0:3000

where xij denotes the corresponding solution of the equations located in i th row
and j th column of the lower triangular matrix in the induced matrix.

Step 5: Average all solutions in order to keep the global consistency and get the
optimal of variables.
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Average the first solutions, then

x D x1 C x2 C x3 C x4 C x5

5
D 2:4445

5
D 0:4889

Average the second solutions, then

x D x21 C x31 C x41 C x32 C x43

5
D 2:4944

5
D 0:4989

The two averaged values from upper and lower triangular matrix are approxi-
mately equal to each other. We can use one of the values as the optimal value
to replace the missing entries. According to the rule of 9-point scales by Saaty
(1977), select a value from the scales 1

9
to 9, which is closest to the averaged

solution, as the final optimal value for the missing value. The closest value in
this example is 0.5, which is consistent with the original value 0.5.

Step 6: Replace the missing value with the optimal values and test its consistency
to guarantee it passes the consistency test.

No matter use 0.4889, or 0.4989 or their average value, 0.4939, or its closest
value in the 9-point scale, that is, 0.5, as the missing value, the revised RPCM
passes the consistency test.

For instance, we use the average of both solutions, 0.4939, as the optimal
value, then, the revised PCM is.

A D

0

B
B
@

1 1
9

0:4939 1
5

9 1 5 2
1

0:4939
1
5

1 1
2

5 1
2

2 1

1

C
C
A

Calculate the maximum eigenvalue, then we can get �max D 4:00745, the
consistency ratio CR D 0.00279, which are extremely close to the original values,
�max D 4:0076 and CR D 0.00284. Thus, the missing values in the pairwise
comparison matrix can be estimated by the IBMM.
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Chapter 5
IBMM for Questionnaire Design Improvement

Questionnaire survey is a commonly used way to collect opinions and views
in AHP/ANP. However, many factors such as tedious design format, redundant
content, long length etc, may lead to inconsistent comparison matrix for the decision
problem. Invalid or bad results of a questionnaire survey may cause the decision
makers to make wrong decision. Furthermore, in the AHP/ANP, the score items
for a comparison matrix in a questionnaire increase drastically if there are more
comparisons, which result in longer survey.

In the previous Chapter, the IBMM is proposed to estimate the missing values
of the pairwise comparison matrix (PCM). In Ergu and Kou (2011), the IBMM
for estimating the missing values was further applied to the improvement of
questionnaire design. Specifically, a scale format is used to design the score items
for a comparison matrix in questionnaire survey. Besides, the IBMM is used to
estimate the missing item scores of the reciprocal pairwise comparison matrix.
The survey questionnaire can be improved according to the importance of score
items and emergency degree of the surveyed questions. Details are described in this
Chapter.

5.1 Motivation of the Research

The unconventional emergency decision maker should identify the related influence
factors and make the decision rapidly. However, the decision making process is
complicated because of the uncertain and unconventional features of emergency and
the limited expertise. For instance, experts in different regions can fill questionnaire
through distributed information communication technology system and provide
suggestions to the decision maker. A problem statement and objective must be
developed for the questionnaire. In addition, the problem and objectives should be
decomposed into a hierarchy where each level is composed of the related attributes

G. Kou et al., Data Processing for the AHP/ANP, Quantitative Management 1,
DOI 10.1007/978-3-642-29213-2 5, © Springer-Verlag Berlin Heidelberg 2013
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Criteria 4
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3

Fig. 5.1 The typical hierarchy structure with three levels in the AHP

or criteria when the AHP is used.1 The score items should be designed for each
PCM in order to collect the information and experts’ views through questionnaire
survey.

In the analytical hierarchy process (AHP), a complicated decision problem can
be decomposed into several hierarchies according to the related attributes or criteria.
The typical AHP hierarchy structure with three levels is shown in Fig. 5.1.

In the first level, there is a four-by-four comparison matrix with respect to the
Goal, which contains 16 entries. In the second level, there are four three-by-three
comparison matrices with respect to Criteria 1, Criteria 2, Criteria 3, Criteria 4,
respectively. The total number of entries in the second level is 36. According to
reciprocal rule, 18 score items are needed in a questionnaire. Likewise, for a typical
3-level hierarchy structure of AHP with m criteria and n alternatives, there is an m-
by-m comparison matrix with respect to the Goal containing m�m entries in the first
level, and there are m numbers of n�n comparison matrices totally containing mn2

entries in the second level. According to the reciprocal property of one reciprocal
PCM, there are only n(n�1)/2 comparisons to be compared for one n � n reciprocal
PCM. The required comparisons in the first level are m(m�1)/2 while there are
m[n(n�1)/2] comparisons in the second level. Thus, the total number of required
comparisons in this typical hierarchy structure is

m.m � 1/=2 C mŒn .n � 1/ =2� (5.1)

Hence, there are m(m�1)/2 C m[n(n�1)/2] involved score items. The item
number will increase quickly with the increase of m and n, which directly result in
longer survey, and may lead to comparison inconsistency or incomplete item scores.
To resolve the both issues, the size of one comparison matrix in AHP (Millet and
Harker 1990; Lim and Swenseth 1993), as well as the missing values estimation
methods for incomplete reciprocal PCM (Fedrizzi and Giove 2007; Chiclana et al
2009), have been extensively studied.

1Since ANP is a generalization of the AHP, and AHP is the special case of ANP, therefore, the
improvement of questionnaire design in AHP by IBMM is only addressed in this Chapter.
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However, the number of attributes or criteria can not be reduced arbitrarily in
order to reflect the nature of the decision problem, especially in the decision making
process for unconventional emergency. The score items of a questionnaire survey
designed for the comparison matrix can be reduced by deliberately ignoring some
comparisons which are relatively unimportant or non-emergent. Then, the missing
values can be estimated by using some missing value processing methods. Thus,
the structure of questionnaire survey can be improved. In addition, the simplified
structure can promote the respondents to fill in the questionnaire survey carefully,
which can increase the response rate and guarantee a reliable surveyed result.
Therefore, the motivation of this research includes the following three aspects.

1. Improve questionnaire design given m and n to reduce the length of a question-
naire

2. Assure the consistency of reciprocal PCM
3. Support rapid and efficient emergency decision making

The objective of this research is to improve questionnaire design and process the
uncertain or missing item scores for rapid and efficient decision making using the
IBMM method. The principles are presented below.

5.2 The Principles of Improving the Questionnaire Design

According to the importance and emergency of unconventional emergency, the
emergency system should differentiate the information of unconventional emer-
gency to provide differentiated services for unconventional emergencies in different
ranks. Based on the theorem of the proposed IBMM for an incomplete PCM,
we can deliberately ignore some comparisons according to the importance and
emergency of the score items, which will reduce the number of score items and
improve questionnaire survey design for rapid and efficient decision making. The
missing values can be estimated using the IBMM technique once the questionnaire
survey data are collected. To assist the decision makers to rapidly collect the related
information in terms of the importance and emergency of score items, the general
improving principle, the format of scale and three design formats are developed.

The General Improving Principle: Ignore some comparisons of the score items
from 1 to n.n � 1/=4 for each PCM in terms of the importance and relevance of the
score items to improve the questionnaire design, where n is the size of the PCM.
The missing comparisons can not be located at the same row or same column if
the number of missing comparisons is n.n � 1/=4, which is the maximum missing
number estimated by IBMM.

Since the single PCM possesses the characteristics of all PCMs, the method for
single PCM can be copied and applied to all other PCMs. In the following, a general
PCM with four orders is used as an example to show the process of The General
Improving Principle. According to the above principle, the following three cases
with missing comparisons for such PCM can be set in terms of the importance and
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relevance of the score items. For an n � n PCM with p missing comparisons, there
are C

p

n.n�1/=2 possible missing cases, where C denotes combination function.

2

6
6
4

1 a12 a13 a14

1 a23 a24

1 a34

1

3

7
7
5

(5.2)

1. Ignore one missing comparison
In this case, there are six possible states for a PCM with four orders, as shown

below.
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2. Ignore two missing comparisons
In this case, there are C 2

6 D 15 possible states, and four of them are shown
below as examples.
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3. Ignore three missing comparisons
In this case, there are C 3

6 D 20 possible states. Four of them are shown below
as instances.
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According to the General Improving Principle, the following four cases should
be avoided since all values in corresponding row or column are unknownnmissing
except the values located at the main diagonal.
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Alternative A

1 3 5 7 93579

More importantMore important

Criteria
Alternative B

Note: 1 - Equal importance ; 3 -Weak importance ; 5 -Strong importance ;
7 - Demonstrated importance; 9 - Absolute importance;
2,4,6,8 - Intermediate values between the two  adjacent judgments

Tick “√ ” the corresponding score in the symbol “ ”

Fig. 5.2 The general format designed to compare two alternatives with respect to one criterion in
a questionnaire survey design
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To the maximum missing comparisons estimated by the IBMM, the number
of comparisons mentioned in equation (5.1) can be reduced to fm.m � 1/=2 C
mŒn .n � 1/ =2�g=2. Besides, any of the above missing formats can reduce the
number of comparison, and the missing value can be estimated by the IBMM
method while the consistency is kept. For instance, assume that we need to design
score items in a questionnaire survey for selecting the best emergency alternatives
among three provided alternatives with respect to the attribute. We can design the
score items for the corresponding comparison matrix in the questionnaire survey
as follows, and take two of them to the questionnaire survey. This example will be
illustrated after the method of the Format of Scale is introduced.

The Format of Scale: In order to present the relationship between two alternatives
with respect to one criterion, the following two formats as shown in Figs. 5.2 and
5.3, the scale combined with 9-point scale proposed by Saaty (2001), is proposed to
score the items for the respondents.

Figure 5.2 is the normal format used to compare two alternatives with respect to
one criterion in a questionnaire survey design. In Fig. 5.3, the score “0” is added to
this scale denoting the uncertain item in order to reflect the real judgment situation.

According to the above design format, the design for selecting the emergence
alternatives mentioned above can be designed as shown in Fig.5.4.

Based on the above general improving principle and the format of scale, the
following three types of formats are proposed to design a questionnaire survey for
a PCM in terms of the importance of score items and corresponding emergency
degree in order to provide differentiated services for unconventional emergency in
different ranks.
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Alternative B

1 5 7 93579

More importantMore important

Criteria
Alternative A

Note: 1 – Equal importance; 3 – Weak importance; 5 – Strong importance;
7 – Demonstrated importance; 9 – Absolute importance;
2,4,6,7 – Intermediate values between the two adjacent judgments
0 - Uncertain

Tick “ ” the corresponding score in the symbol “ ”

0

Fig. 5.3 The general format with uncertainty designed to compare two alternatives with respect
to one criteria in a questionnaire survey design

Feasibility

Alternative A

1 3 5 7 93579

More importantMore important

0

Alternative B

Alternative A

1 3 5 7 93579

More importantMore important

0

Alternative C

Feasibility

Alternative B

1 3 5 7 93579

More importantMore important

0

Alternative C

Feasibility

Fig. 5.4 The questionnaire design using general format with uncertainty for selecting the emer-
gence alternatives with respect to feasibility

Design Format 1: Use the formal format without the uncertain factor to design a
questionnaire survey.

Design Format 2: Use the general format with uncertain factor as shown in Fig. 5.2
to design a questionnaire survey.

Design Format 3: Skip some score items in terms of above principals to design a
questionnaire survey.
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Table 5.1 The general PCM
with four orders Goal C1 C2 C3 C4

C1 1 a12 a13 a14

C2 1 a23 a24

C3 1 a34

C4 1

The first type of design format is a commonly used format. For the second type
of design format, the uncertain score factor (item) is added to the scale score item
comparing the first one, which is a common situation during filling a questionnaire
survey because of the respondents’ limited expertise and/or preference conflicts.
Although the set of uncertain item may cause some irresponsible respondents to
select more than the maximum number of missing comparison estimated by IBMM,
and lead to the invalid response, it is still better than arbitrary selection which may
result in the wrong decision making. For the third type of design format, the missing
number of comparison can be set from 1 to n(n�1)/4 to reduce the number of score
items. This type of design format is designed for rapid and efficient decision making,
especially for unconventional emergency decision making. When we choose the
maximum missing comparisons in a questionnaire design, the missing comparisons
or the corresponding reciprocal missing comparisons should not be located at the
same row or same column.

In order to demonstrate the above design formats, the following PCM with four
orders as shown in Table 5.1 is used as an example.

When score items are designed for this comparison matrix in a questionnaire
survey, the second type of design format can be used, for instance, the design of
score items for the PCM is as shown in Fig. 5.5.

In an unconventional emergency scenario, the above design format can further be
improved by ignoring some comparisons. For instance, ignoring three comparisons
using the design format 3 as shown in Fig. 5.6.

Comparing with previous two design formats, the third design format will
increase double information gathering speed if the maximum missing method is
used, which is very important for rapid and efficient unconventional emergency
decision making.

5.3 Illustrative Example

In order to show the process of improving a questionnaire design using the second
and third types of design format and estimating the missing score items, an example
about H1N1 flu is introduced in this section. Since the processes of designing a
score item and estimating a missing score item for single comparison matrix can be
copied and applied to all others comparison matrices, in this section, we only focus
on single comparison matrix with four orders.
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Goal
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More importantMore important

0
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Fig. 5.5 The design format of score items with uncertain factor for a PCM with four orders

In year 2009, the outbreak of H1N1 flu had caused a huge panic. At the
beginning, it was difficult to identify whether it was H1N1 flu or just a seasonal
flu since the symptoms of H1N1 were similar to seasonal flu. In such scenario,
assume a hospital located at remote region received a patient who just came back by
plane from Mexico accompanying the following symptoms such as Fever, Runny,
Confusion and Vomiting. The doctors could not make decision whether it was
H1N1 flu or a seasonal flu because of the limited expertise about H1N1. Therefore,
they decided to advise some related experts through the telemedicine systems of
this hospital and make decision using the AHP embedded in the telemedicine
systems. Assume the advice can normally be done through questionnaire conveyed
by telemedicine systems. According to the design format 2 and format 3, we can
classify the questionnaire design into two steps. First, design a short questionnaire
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Goal
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1 3 5 7 93579
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0
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Fig. 5.6 The design format for a PCM with four orders by ignoring three comparisons

Table 5.2 The 4 � 4 PCM
for H1N1 symptoms

H1N1 symptoms Fever Runny Confusion Vomiting

Fever 1 a12 a13 a14

Runny 1 a23 a24

Confusion 1 a34

Vomiting 1

using the design format 3 for this unconventional emergency in order to collect the
data from experts rapidly. Second, design a questionnaire using design format 1 and
design format 2 to validate the results obtained from first questionnaire. The three
kinds of design formats can also be used simultaneously.

In order to validate the results of design format 2 and 3 using the results of design
format 1, the design format 1 is introduced as case 1, design format 2 is presented
as case 2, and the design format 3 is demonstrated as case 3. According to the
patient’s clinical symptoms, a 4�4 PCM for attributes Fever, Runny, Confusion and
Vomiting with respect to H1N1 symptoms can be generated, as shown in Table 5.2.
The following three cases are used to design and improve a questionnaire design
for PCM.

Case 1 – Use the Design Format 1 to design score items for this PCM, and assume
that the following response is collected in one completed questionnaire.

Replace the corresponding entries with the data obtained from Fig. 5.7, and
the PCM as shown in Table 5.3 is obtained. Calculate the maximum eigenvalue,
consistency ratio (CR) and priority weights of this PCM, we can get �max D
4:0816 and CR D 0:0306. The priority weights are shown in Table 5.3.
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Fig. 5.7 The completed questionnaire designed by Design Format 1
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Table 5.3 Single PCM with four orders obtained from questionnaire survey

H1N1 symptoms Fever Runny Confusion Vomiting Priority weights

Fever 1 5 3 1
3

0.2713

Runny 1
5

1 1
2

1
7

0.0618

Confusion 1
3

2 1 1
4

0.1143

Vomiting 3 7 4 1 0.5527

Case 2 – Design the score items for this PCM in a questionnaire by using Design
Format 2. Assume one of the completed questionnaires is listed in Fig. 5.8.

From this questionnaire, the following incomplete PCM with two missing
comparisons, as shown in Table 5.4, can be obtained.

Apply the IBMM method to this incomplete comparison matrix and estimate
the two missing comparisons. The brief estimation steps are as follows:

Step 1: Replace the two missing values with unknown variables x,1/x; y,1/y as
shown below

0

B
B
B
@

1 x 3 1
3

1
x

1 y 1
7

1
3

1
y

1 1
4

3 7 4 1

1

C
C
C
A

Step 2: Calculate the induced bias matrix C using the IBMM formula C D AA �
nA.

Step 3: Set all entries with unknown variables be zeros in the upper triangular
matrix, and get six number of equations.

Step 4: Solve pairwise combined systems of linear equations.
Step 5: Average all solutions and find the optimal values of variables. The results

of calculation are x D 2.86 and y D 0.5850. Therefore, the corresponding values
located at the 9-point scale are 3 and 1/2 respectively.

Step 6: Replace the unknown variables with 3 and 1/2, then calculate the maximum
eigenvalue, CR, and priority weights for the revised PCM, we get

�max D 4:0206; CR D 0:0077; W D �

0:2240 0:0737 0:1330 0:5693
�

Likewise, we can deliberately ignore any two of comparisons in above PCM (as
shown in Table 5.2), then estimate them using the IBMM. The results are shown
in Table 5.5.

Case 3 – Since the decision making for this emergent event needs to be made as soon
as possible, we design the score items for a questionnaire using Design Format 3,
and assume one of the questionnaires was filled as Fig. 5.9.

Transform the corresponding scale scores to the following incomplete PCM,
which is shown in Table 5.6.
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Fig. 5.8 The completed questionnaire designed by Design Format 2
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Table 5.4 Single incomplete
PCM with four orders
obtained from above
questionnaire survey

H1N1 symptoms Fever Runny Confusion Vomiting

Fever 1 � 3 1
3

Runny � 1 � 1
7

Confusion 1
3

� 1 1
4

Vomiting 3 7 4 1

Table 5.5 The missing comparisons and corresponding estimated
values in a 4 � 4 PCM

MC EV CV OV MC EV CV OV

a12 2.5322 3 5 a13 2.4001 2 or 3 3
a13 1.3123 2 3 a34 0.2925 1/4 1/4
a12 5.8920 6 5 a14 0.7321 1/2 1/3
a14 0.7970 1/2 or 1 1/3 a23 0.5859 1/2 1/2
a12 5.3003 5 5 a14 0.7206 1/2 1/3
a23 0.7633 1/2 1/2 a24 0.1384 1/7 1/7
a12 6.1746 6 5 a14 0.7838 1/2 1/3
a24 0.1197 1/7 1/7 a34 0.2826 1/4 1/4
a12 4.8677 5 5 a23 0.6175 1/2 1/2
a34 0.2318 1/4 1/4 a24 0.1514 1/6 1/7
a13 2.6644 3 3 a23 0.7832 1/2 1/2
a14 0.6902 1/2 1/3 a34 0.2383 1/4 1/4
a13 2.0444 2 3 a24 0.0663 1/9 1/7
a24 0.1021 1/7 1/7 a34 0.1273 1/8 1/4

MC missing comparisons, EV estimated values, CV closest value
within 9-point scale, OV original values

H1N1 Symptoms

Fever

1 3 5 7 93579

More importantMore important
Confusion

H1N1 Symptoms

Runny

1 3 5 7 93579

More importantMore important
Confusion

H1N1 Symptoms

Confusion

1 3 5 7 93579

More importantMore important
Vomiting

Fig. 5.9 The completed questionnaire designed by Design Format 3
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Table 5.6 The incomplete
4 � 4 PCM with three missing
comparisons obtained from
above questionnaire survey

H1N1 symptoms Fever Runny Confusion Vomiting

Fever 1 � 3 �
Runny � 1 1

2
�

Confusion 1
3

2 1 1
4

Vomiting � � 4 1

Table 5.7 The possible three missing comparisons, the correspond-
ing estimated values, and the closest values located at 9-point scale

MC EV CV OV MC EV CV OV

a12 2.3333 3 5 a13 2.8571 3 3
a13 1.3333 2 3 a14 0.7143 1/2 1/3
a23 0.5714 1/2 1/2 a23 0.5714 1/2 1/2
a12 2.6667 3 5 a13 2.5000 3 3
a13 1.3333 2 3 a14 0.6250 1/2 1/3
a24 0.1250 1/7 1/7 a24 0.1250 1/7 1/7
a12 2.3333 3 5 a13 2.5000 3 3
a13 1.1667 1 3 a14 0.7143 1 1/3
a34 0.2857 1/4 1/4 a34 0.2857 1/4 1/4
a12 5.2500 5 5 a13 1.3333 1 or 2 3
a14 0.7500 1 or 1/2 1/3 a23 0.2667 1/2 1/2
a23 0.5714 1/2 1/2 a24 0.0667 1/9 1/7
a12 6.0000 6 5 a13 2.5000 3 3
a14 0.7500 1 or 1/2 1/3 a24 0.0667 1/9 1/7
a24 0.1250 1/7 1/7 a34 0.1333 1/7 1/4
a12 6.0000 6 5 a14 0.7500 1 or 1/2 1/3
a14 0.8571 1 or 1/2 1/3 a23 0.6000 1/2 1/2
a34 0.2857 1/4 1/4 a24 0.1500 1/7 1/7
a12 2.3333 2 or 3 5 a14 0.7143 1 or 1/2 1/3
a23 1.2857 1 or 2 1/2 a23 0.6000 1/2 1/2
a34 0.1111 1/7 1/4 a34 0.2381 1/4 1/4
a12 6.0000 6 5 a23 0.6000 1/2 1/2
a24 0.0556 1/9 1/7 a24 0.0667 1/9 1/7
a34 0.1111 1/7 1/4 a34 0.1111 1/7 1/4

MC missing comparisons, EV estimated values, CV closest value
within 9-point scale, OV original values

Apply the IBMM to this incomplete PCM and estimate the missing values. The
estimated missing values, maximum eigenvalue of the revised PCM, the CR, and
the corresponding priority weights are shown below:

a12 D 6; a14 D 0:75; and a24 D 0:125I �max D 4:0297; CR D 0:0111;

W D �

0:3186 0:0605 0:1166 0:5042
�
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Table 5.8 The comparisons of the results obtained from three cases

Priority weights

�max CR Fever Runny Confusion Vomiting

Case 1 4.0816 0.0306 0.2713 0.0618 0.1143 0.5527
Case 2 4.0206 0.0077 0.2240 0.0737 0.1330 0.5693
Case 3 4.0297 0.0111 0.3186 0.0605 0.1166 0.5042

Similarly, there are 16 different kinds of incomplete PCM with three missing
comparisons. The questionnaire can be designed into 16 different formats in
terms of the importance and emergency of the score items. The possible kinds of
three missing comparisons, the corresponding estimated values, and the closest
values located at 9-point scale are shown in Table 5.7.

According to the results obtained from above three cases, the comparisons
among the �max, CR, and the corresponding priority weights are shown in
Table 5.8.

It can be seen from Table 5.8 that the maximum eigenvalues and the CRs of
both revised PCM are smaller than that of the complete PCM, however, the ranks
of priority vectors are the same, that is, compared with the seasonal flu, the ranks
of the symptoms of H1N1 flu are Vomiting, Fever, Confusion and Runny. The
results of comparisons show that the questionnaire can be designed using Design
Format 2 and Design Format 3. The score items are reduced and the questionnaire
is improved, which is extremely important for rapid and efficient unconventional
emergency decision making.
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Chapter 6
IBMM for Rank Reversal

When a new alternative or criterion is added to the decision model or old ones
are deleted from the decision matrix, the rank of the alternatives may be reversed,
namely, a less preferred alternative may become more preferred. In this Chapter, the
IBMM is further extended to perform the sensitivity analysis of rank reversal when
a new alternative or criterion is added or old ones are deleted. Details are described
below.

6.1 Rank Reversal Issue in the AHP/ANP

Since Belton and Gear (1983) proposed the rank reversal problem by an example
in AHP, the rank reversal problem has been extensively studied (Saaty and Vargas
1993; Millet and Saaty 2000; Triantaphyllou 2004; Wijnmalen and Wedley 2008).
There are two situations which may cause rank reversal, that is, adding new
alternatives/criteria or deleting old ones. Rank reversal is attributed to the use of
relative measurement and normalization (Saaty 2001b).

However, there are few data processing models which can analyze the sensitivity
or identify the critical values of rank reversal. In the process of decision making,
lots of criteria should be taken into consideration in order to make the valid
decision making. If new alternative or criterion is added in the decision process, the
rank of alternatives may be reversed, and a less preferred alternative may become
more preferred. In Ergu et al. (2011g), the IBMM is creatively applied to explore
and analyze the sensitivity of rank reversal and is introduced as the procedure
to determine the critical values of rank reversal. Without losing generality, in the
remaining part of this Chapter, we will only discuss the case that a new criterion or
an alternative is added. The specific processes of sensitivity analysis of rank reversal
will be briefly presented next.

G. Kou et al., Data Processing for the AHP/ANP, Quantitative Management 1,
DOI 10.1007/978-3-642-29213-2 6, © Springer-Verlag Berlin Heidelberg 2013
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6.2 Sensitivity Analysis of Rank Reversal by the IBMM

In this section, the IBMM is further introduced to determine the reversal points of
rank reversal. The steps for sensitivity analysis of rank reversal are as follows.

1. When a criterion or alternative is added, append a new row and a corresponding
column with unknown variables denoted as x, y, z, etc. to the existing PCM.

2. Apply the IBMM to create a system of relation equations for the unknown
variables.

3. Solve the equations by combining the 9-point scale as a constraint to estimate the
range of the unknown variables.

4. Estimate the reversal points of rank reversal by fixing one variable at a time in
the sensitivity analysis.

6.3 Illustrative Examples

To analyze the sensitivity of rank reversal and identify the critical values of rank
reversal by IBMM, assume a new alternative (in short, S4) is added to the following
matrix S as shown in Table 6.1. The priority vectors of alternatives S1, S2 and
S3 with respect to the criterion S are calculated and shown in Table 6.1. We
compute below the priority vector of alternatives with respect to criterion S and
found S2 > S1 > S3.

Assume a potential alternative, S4, is added. To determine the reversal points
of rank reversal, and develop insights into the intrinsic relationship between
alternatives, we follow the steps below.

Step 1: Add an alternative by creating a new row and column to matrix S using
variables x, y, z and their reciprocals. The new matrix is denoted as S0:

S 0 D

0

B
B
@

1 1=7 1 x

7 1 9 y

1 1=9 1 z
1=x 1=y 1=z 1

1

C
C
A

Step 2: Apply the IBMM to this matrix. The induced bias matrix becomes

Table 6.1 The comparison
matrix C and priority vectors
of three alternatives

S S1 S2 S3 Priority vector

S1 1 1/7 1 0.1049
S2 7 1 9 0.7986
S3 1 1/9 1 0.0965
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C D

0

B
B
@

0 �11=63 C x=y �5=7 C x=z �2x C y=7 C z
0 �11 C y=z 7x � 2y C 9z

0 x C y=9 � 2z
0

1

C
C
A

Step 3: Construct the constraint system of equations using the upper matrix.

8

ˆ̂
<

ˆ̂
:

�11=63 C x=y D 0

�5=7 C x=z D 0

�11 C y=z D 0

s:t:

8

ˆ̂
<

ˆ̂
:

1=9 � x � 9

1=9 � y � 9

1=9 � z � 9

(6.1)

8

ˆ̂
<

ˆ̂
:

�2x C y=7 C z D 0

7x � 2y C 9z D 0

x C y=9 � 2z D 0

s:t:

8

ˆ̂
<

ˆ̂
:

1=9 � x � 9

1=9 � y � 9

1=9 � z � 9

(6.2)

Step 4: Solve the constrained systems of Eqs. (6.1) and (6.2). From (6.1), the
relationships between x and y, x and z, and y and z can be determined, which
are shown in Eq. (6.3). The relationships between any two of the variables can
be further derived from Eqs. (6.2)–(6.3), e.g. the relationship between y and z is
shown in Eq. (6.4).

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

x D 11

63
y

x D 5

7
z

y D 11z

(6.3)
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8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

y D 45

11
z � 4z

y D 11z

y D 25

3
z � 8z

y D 189

23
z � 8z

y D 207

25
z � 8z

(6.4)

To avoid estimating the missing data arbitrarily, the decision maker will focus
on one pair of relationship first, say between y and z and answer: how much
more important is y to z with respect to the criterion S? Suppose the decision
maker chooses one of the closest relations that best describes his sentiment from
Eq. (6.4), say y D 11z. We then apply it to Eq. (6.2) to further determine the
relationship between x and z. Equation (6.2) thus becomes

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

y D 11z

x D 13

7
z

x D 7

9
z

x D 9

7
z

(6.5)

Abiding by the constraint that 1=9 � x; y; z � 9, in (6.5), we obtain

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

0:0101 � z � 0:8182

0:0598 � z � 4:4846

0:1429 � z � 11:5714

0:0864 � z � 7

(6.6)

The ranges in (6.6) are reduced to 0:1429 � Z � 0:8182, which is close to the
interval 1=7 < z < 1 in the 9-point integer scale used in AHP/ANP.

Step 5: Analyze the sensitivity of rank reversal. By applying the real constraint for
z (i.e. 1=7 < z < 1) to Eqs. (6.5) and (6.6), we can determine the ranges for
x and y (see the middle parts of Tables 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8).
Table 6.2 shows the sensitivity analysis of rank reversal when S4 is added and
z D 1/5. Tables 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 below show the sensitivity analysis
of rank reversal when the value of variable z varies at different level.
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Table 6.9 The reversal
points that cause rank
reversal in S1 and S3

z 1/7 1/6 1/4 1/3 1/2 1

x 1/9 1/8 1/5 1/4 1/3 1/2
y 1/2 1/2, 1 1 1,2,3 2,3,4,5,6 4,5,6,7,8,9

Ranges of x and y variables when z is fixed:
z D 1/7: 1/9 � x � 1/4; 1/2 � y � 2 z D 1/3: 1/4 � x � 1/2;
1 � y � 4
z D 1/6: 1/8 � x � 1/4; 1/2 � y � 2 z D 1/2: 1/3 � x � 1;
2 � y � 6
z D 1/4: 1/5 � x � 1/3; 1 � y � 3 z D 1: 1/2 � x � 1;
4 � y � 9
Note that different levels of z values are chosen based on
1/7 < z < 1 constraint, derived from Eq. (6.6)

Table 6.2 shows that when z D 1/5, variables x and y can be determined
using Eqs. (6.3)–(6.4). The feasible regions within the 9-point scale are found
to be: 1 � y � 2 and 1=7 � x � 1=3. We next perform the sensitivity
analysis of rank reversal based on these ranges. The priorities of the four al-
ternatives are derived and shown in Table 6.2. We found that the ranks of S1
and S3 are reversed in two places where two groups of the boundary values of
variables are used. That is, S1 D 0.0624 < S3 D 0.0644 when x D 1/7 and y D 1;
and S1 D 0.0615 < S3 D 0.0620 when x D 1/7 and y D 2. Likewise, the sensitivity
analyses shown in Tables 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 are conducted by fixing the
z value at a time. Table 6.9 summarizes the reversal points that cause rank reversal
in S1 and S3.

From Tables 6.2 and 6.9, we found that rank reversal of S1 and S3 occur
when both x and y variables reach the lower bound of the inequality constraints
simultaneously, once the value of z is determined. When the x variable reaches
the lower bound, and the values of y are within the ranges specified, rank reversal
may also occur. Thus, whether the ranks of S1 and S3 will reverse depends on the
inequality constraints of x and y once z is given. This will be also true when we fix
x or y instead of z.

But why the ranks of S1 and S3 reverse when both x and y variables reach
the lower bounds of their inequality constraints? Recall that to maintain the global
consistency, we have to minimize the deviations in the induced bias matrix C. In the
above S example, the weight of S1 is 0.1049, which is close to S3 D 0.0965. When
the new S4 is added and the value of z is chosen, the importance between S3 and S4
is automatically determined by z. The feasible regions within the 9-point scale on
both x and y variables can also be determined through matrix C.

In our example, for S1 and S3 to reverse the rank, the priority of S3 needs to
be higher than that of S1. Since the importance between S3 and S4 is bounded by
z, the importance of S3 can be improved by raising the weight of S4. Hence for
rank reversal to take place between S1 and S3, we can increase the weight of S4
with respect to S1 and S2. Note that when both x and y reach their lower bounds,
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we know from the comparison matrix that S4 will be more important than S1 and
S2. S4 has higher weight than S1 and S2; so is S3. Thus S3 has higher priority
than S1 and rank reversal occurs. In summary, by identifying the boundary values
of the inequality constraints on x and y given z, the proposed model can effectively
perform sensitivity analysis to predict when rank reversal will take place.
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Chapter 7
Applications of IBMM

The AHP and ANP are two of the widely used MCDM methods, and have been
extensively applied to the real-world decision making problems. However, the
inconsistency issue and missing item scores issue are still two of the major issues
when AHP and ANP are used. In the previous Chapters, the IBMM is proposed
to deal with the inconsistency issue, missing item scores, and rank reversal issue.
In this Chapter, the IBMM is applied to two real world applications, the Task
Scheduling and Resource Allocation in Cloud Computing Environment by AHP and
Risk Assessment and Decision Analysis by ANP. Details are presented in Sects. 7.1
and 7.2.

7.1 Task Scheduling and Resource Allocation in Cloud
Computing Environment by the IBMM

“A Cloud is a type of parallel and distributed system consisting of a collection
of interconnected and virtualized computers that are dynamically provisioned
and presented as one or more unified computing resources based on service-
level agreements established through negotiation between the service provider and
consumers.” (Buyya et al. 2009). The computing resources, either software or
hardware, are virtualized and allocated as services from providers to users. The
computing resources can be allocated dynamically upon the requirements and
preferences of consumers.

Traditional system-centric resource management architecture cannot process the
resource assignment task and dynamically allocate the available resources in cloud
computing environment. Fujiwara et al. (2009) proposed a market-based mechanism
to allocate resources in a cloud computing environment, where the resources are
virtualized and delivered to users as services. Since the consumers may access
applications and data of the “Cloud” from anywhere at any time, it is difficult for the
cloud service providers to allocate the cloud resources dynamically and efficiently.

G. Kou et al., Data Processing for the AHP/ANP, Quantitative Management 1,
DOI 10.1007/978-3-642-29213-2 7, © Springer-Verlag Berlin Heidelberg 2013
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In Ergu et al. (2011e), a task-oriented resource allocation model is proposed.
The tasks provided by the users are ranked by reciprocal pairwise comparison
matrix and the Analytic Hierarchy Process (AHP). The cloud resources are assigned
for the tasks according to the weight of each task determined by reciprocal
pairwise comparison matrix of user preferences. Since different users could have
conflicting preferences, there might be inconsistent elements in the reciprocal
pairwise comparison matrix, thus the IBMM is used to improve the consistency
ratio. Details are described as follows.

7.1.1 Resource Allocation in Cloud Computing

Resource allocation is a hot topic and key factor in distributed computing and grid
computing (Huang and Chao 2001; Ismail et al. 2008; Wei et al. 2009; Moschakis
and Karatza 2010). For distributed computing, processing capacity resources are
homogeneous and reserved. However, for grid computing, the resources are highly
unpredictable. The computers are heterogeneous, their capacities are typically
unknown and changing over time, which may connect and disconnect from the
grid at any time. Therefore, the same task is sent to more than one computer in
Grid computing, and the user receives the output of the computer that completes
the task first (Koole and Righter 2007). Dynamic allocation of tasks to computers
is complicated in grid computing environment due to the complicated process of
assigning multiple copies of the same task to different computers. Likewise, the
resource allocation is also a big challenge in cloud computing.

Cloud computing not only enables users to migrate their data and computation
to a remote location with minimal impact on system performance, but also easily
access to cloud computing environment to visit their data and obtain the compu-
tation at anytime and anywhere (Hayes 2008). Cloud computing is attempting to
provide cheap and easy access to measurable and billable computational resources
comparing with other paradigms such as distribute computing, Grid computing etc.
Therefore, Yazır et al. (2010) proposed a new approach for dynamic autonomous re-
source allocation in computing clouds through distributed multiple criteria decision
analysis. In cloud computing environment, the tasks are distributed across distinct
computational nodes. In order to allocate cloud computing resources, nodes with
spare computing power are detected, and network bandwidth, line quality, response
time, task costs, and reliability of resource allocation are analyzed. Hence, the
quality of cloud computing service can be described by resources such as network
bandwidth, complete time, task costs, and reliability etc. The framework of task
scheduling and resource allocation in cloud computing environment is shown in
Fig. 7.1.

In the proposed framework, computing tasks are collected in Task Pool. Tasks
are ranked and submitted to computing resources distributed in Cloud Computing
Nodes. The computing resources are allocated according to the weights of tasks.
The proposed framework will be further illustrated in the following section.
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Fig. 7.1 Task scheduling and resource allocation in cloud computing environment

7.1.2 Task-Oriented Resource Allocation in Cloud Computing

In order to efficiently allocate computing resources, scheduling becomes a very
complicated task in cloud computing environment where many alternative comput-
ers with varying capacities are available. Efficient task scheduling mechanism can
meet users’ requirements and improve the resource utilization (Fang et al. 2010).
The cloud service providers often receive lots of computing requests with different
requirements and preferences from users simultaneously. Some tasks need to be
fulfilled at lower cost and less computing resources, while some tasks require higher
computing ability and take more bandwidth and computing resources. To improve
the utility of resource and meet users’ requirements, all tasks should be ranked
according to available resources such as network bandwidth, complete time, task
costs, and reliability of task, which can be structured in a hierarchy as shown in
Fig. 7.2.

When the cloud computing service providers receive the tasks from users, the
tasks can be pairwise compared using the comparison matrix technique. The cloud
computing providers negotiate with the users on the requirements of tasks including
network bandwidth, complete time, task costs, and reliability of task. A comparison
matrix can be built based on the Saaty Rating Scale (Saaty 1990) as shown in Table
2.2, which is used to determine the relative importance of each task in terms of
each criterion. The weights of all tasks can be derived using the analysis hierarchy
process (AHP).
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Optimal Resource
Allocation

Network
Bandwidth

Complete
Time

Task
Expenses

Task
Reliability

Task 1 Task 2 Task 3 Task 4 Task … Task n

Fig. 7.2 The hierarchical structure of requested tasks in cloud computing environment

The computing resource or storage resource in cloud computing environment
can be assigned to the corresponding task according to the weight of each task once
calculated. Therefore, various resources need to be optimally allocated in a dynamic
setting in terms of the weights of tasks to maximize the cloud computing system
performance.

7.1.3 Illustrative Examples

When the CR is more than 0.1, the reciprocal comparison matrix needs to be
adjusted until the CR is less than 0.1. Saaty has proved that the final priority vectors
remain the same as long as the CR is less than 0.1, therefore in most cases, a
reciprocal comparison matrix is valid if the CR is less than 0.1. However, it is
different for tasks priorities in cloud computing since the computing resources
are allocated according to the weights of the requested tasks, and the charges are
also paid in terms of what kinds of computing resources are used to fulfill the
tasks. To illustrate the strict consistency requirement for tasks which computing
resources should be allocated, two examples with four requested tasks and with
eight requested tasks are used in the following.

Example 7.1. Assume there are four tasks applying for the cloud computing
resource, the comparison matrix with respect to the response time is:

Response time T1 T2 T3 T4 Priorities

T1 1 4 2 6 0.5301
T2 1

4
1 2 4 0.2339

T3 1
2

1
2

1 2 0.1643
T4 1

6
1
4

1
2

1 0.0716
CR D 0.0736
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In order to present explicitly, the comparison matrix is denoted as

A D

2

6
6
6
6
6
6
6
6
4

1 4 2 6
1

4
1 2 4

1

2

1

2
1 2

1

6

1

4

1

2
1

3

7
7
7
7
7
7
7
7
5

Apply the proposed consistency identification method to further improve the
consistency ratio.

Step 1: The induced matrix C D A 	 A � 4 	 A is

C D

2

6
6
4

0 �5:5 7 8

1:1667 0 �1:5 �2:5

�0:5417 1:5 0 1

�0:0208 0:4167 �0:1667 0

3

7
7
5

Step 2: The largest value in matrix C is 8, where location is 1st row and 4th column.
Step 3: Identify all the values in 1st row and 4th column of pair-wise matrix A,

that is

r1 D �

1 4 2 6
�

; and cT
4 D �

6 4 2 1
�

Step 4: The scalar product b of the vectors r1 and cT
4 in the dimension 4, that is

b D r1 � cT
4 D �

6 16 4 6
�

Step 5: The bias identifying vector f is

f D b � a14 D �

0 10 �2 0
�

Step 6: The value, 10, is the largest one far from zero, and others are zero or close
to zero. It indicates that a14 D 6 is probably correct while 10 D a12a24 � a14 is
the inconsistent element. a12a24 may have problem.

Step 7: As c12 D �5:5 < 0 and c24 D �2:5 < 0, the corresponding elements a12

and a24 are too large.
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Suppose the a12 is decreased to 2, then the revised comparison matrix A becomes:

A D

2

6
6
6
6
6
6
6
4

1 2 2 6
1

2
1 2 4

1

2

1

2
1 2

1

6

1

4

1

2
1

3

7
7
7
7
7
7
7
5

Calculate the eigenvector and eigenvalue of matrix A as well as the consistency
ratio, we get

�max D 4:0458; and C:I: D 0:89

C:R: D .�max � n/ =.n � 1/

R:I:
D .�max � 4/ =3

0:89
D .4:0458 � 4/ =3

0:89
D 0:0172 < 0:1

The eigenvector with respect to the maximum eigenvalue is shown below.

Response time T1 T2 T3 T4 Priorities

T1 1 2 2 6 0.4578
T2 1

2
1 2 4 0.2910

T3 1
2

1
2

1 2 0.1738

T4 1
6

1
4

1
2

1 0.0775
CR D 0.0172

Compare the final priorities of four tasks with respect to response time with
CR D 0.0736 and CR D 0.0172 respectively, which is shown as follows,

Tasks CR D 0.0736 Priorities CR D 0.0172 Priorities

T1 0.5301 0.4578
T2 0.2339 0.2910
T3 0.1643 0.1738
T4 0.0716 0.0775

It is shown that the weight of task 1 decreases, and the weights of task 2,
task 3 and task 4 increase slightly. Although the ranking results do not change,
the weights of tasks have changed. In the cloud computing resource allocation,
there are massive computers linked together to executive the corresponding tasks
with different preferences and requirement. The tasks with different weights will be
assigned to different cloud computing nodes, which may lead to different computing
resources usages and expenses. Therefore, the further inconsistency identification
even the CR is already less than 0.1 is becoming important and meaningful.
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From the revised comparison matrix A, there still have some inconsistent
judgments, such as a13a34 D 4 ¤ a14 D 6 and a12a24 D 8 ¤ a14 D 6, although the
CR is equal to 0.0172. In order to further improve the consistency ratio, the induced
bias matrix again can be used to identify the inconsistent elements.

Step 1: The induced matrix C D A 	 A � 4 	 A is

C D

2

6
6
4

0 �1:5 3 0

0:66 0 �1 �1

�0:416 0:5 0 1

0:041 0:0833 �0:166 0

3

7
7
5

Step 2: The largest value in matrix C is 3, where location is 1st row and 3rd column.
Step 3: Draw out all the values in 1st row and 3rd column of pair-wise matrix A,

that is

r1 D �

1 2 2 6
�

; and cT
3 D �

2 2 1 1=2
�

Step 4: The scalar product b of the vectors r1 and cT
3 in the dimension 4, that is

b D r1 � cT
3 D �

2 4 2 3
�

Step 5: The bias identifying vector f is

f D b � a13 D �

0 2 0 1
�

Step 6: The values, 2, is the largest one. Because 2 D a12a23 � a13, it shows that
a13 might be slightly small or the elements a12, a23, may be slightly large.

Step 7: As c13 D 3 > 0, c12 D �1:5 < 0, c23 D �1 < 0, the corresponding
element a13 is too small, the corresponding elements a12, a23, are too large. The
method of matrix order reduction (Ergu et al. 2011b) is applied to identify the
elements a13, a12, a23. When the task 1 was removed from the matrix A, namely,
the first row and first column are deleted, the induced matrix C becomes:

0

@

0 0 0

0 0 0

0 0 0

1

A

It shows that the inconsistent elements are a12, a13, namely, a13 is too small and
a12 is too large. It explains that both of the elements have affected c14 D 0.

The results of the identification explain the reasons why the following
inequalities occur. That is,

Since a13 is too small, a13a34 D 4 < a14 D 6

Since a12 is too large, a12a24 D 8 > a14 D 6
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Suppose the a13 is increased to 3, and calculate the eigenvalue, consistency ratio
and eigenvector for the second revised comparison matrix, we can get

�max D 4:0104; CR D 0:0039; W D �

0:4899 0:2827 0:1516 0:0758
�

:

The weights of task 1 increased from 0.4578 to 0.4899 while the weights of task
3 decreased from 0.1738 to 0.1516. The weights of task 2 and task 4 changed
slightly.

Example 7.2. To further illustrate the importance of inconsistency identification
under CR < 0.1 in cloud computing resource allocation, we take the comparison
matrix in eight order (Ergu et al. 2011b) as an example. Assume there are eight
tasks applying for the cloud computing resources, and the comparison matrix with
respect to task expenses and the priorities of all tasks are listed below

Task expenses T1 T2 T3 T4 T5 T6 T7 T8 Priorities

T1 1 2 1/2 2 1/2 2 1/2 2 0.1091
T2 1/2 1 4 1 1/4 1 1/4 1 0.1238
T3 2 1/4 1 4 1 4 1 4 0.1669
T4 1/2 1 1/4 1 1/4 1 1/4 1 0.0546
T5 2 4 1 4 1 4 1 4 0.2183
T6 1/2 1 1/4 1 1/4 1 1/4 1 0.0546
T7 2 4 1 4 1 4 1 4 0.2183
T8 1/2 1 1/4 1 1/4 1 1/4 1 0.0546
CR D 0.1055

The inconsistent values in the comparison matrix are identified by the IBMM
model (Ergu et al. 2011b), namely, a32 is too small while a23 is too large. Let us
assume the a32 is increased to 1/3 from 1/4, and a23 is decreased to 3 from 4, then
calculate the corresponding CR and priority vectors of tasks, we get:

Task expenses T1 T2 T3 T4 T5 T6 T7 T8 Priorities

T1 1 2 1/2 2 1/2 2 1/2 2 0.1114
T2 1/2 1 3 1 1/4 1 1/4 1 0.0933
T3 2 1/3 1 4 1 4 1 4 0.1825
T4 1/2 1 1/4 1 1/4 1 1/4 1 0.0557
T5 2 4 1 4 1 4 1 4 0.2228
T6 1/2 1 1/4 1 1/4 1 1/4 1 0.0557
T7 2 4 1 4 1 4 1 4 0.2228
T8 1/2 1 1/4 1 1/4 1 1/4 1 0.0557
CR D 0.0504
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Further change a32 to 4 from 1/4, and a23 to 1/4, and calculate the CR and priority
weights of all tasks, we get

Task expenses T1 T2 T3 T4 T5 T6 T7 T8 Priorities

T1 1 2 1/2 2 1/2 2 1/2 2 0.1111
T2 1/2 1 1/4 1 1/4 1 1/4 1 0.0556
T3 2 4 1 4 1 4 1 4 0.2222
T4 1/2 1 1/4 1 1/4 1 1/4 1 0.0556
T5 2 4 1 4 1 4 1 4 0.2222
T6 1/2 1 1/4 1 1/4 1 1/4 1 0.0556
T7 2 4 1 4 1 4 1 4 0.2222
T8 1/2 1 1/4 1 1/4 1 1/4 1 0.0556
CR D 0.000

The comparison of priority weights for eight tasks with different acceptable CR
is shown below.

Tasks CR D 0.1055 CR D 0.0504 CR D 0

T1 0.1091 0.1114 0.1111
T2 0.1238 0.0933 0.0556
T3 0.1669 0.1825 0.2222
T4 0.0546 0.0557 0.0556
T5 0.2183 0.2228 0.2222
T6 0.0546 0.0557 0.0556
T7 0.2183 0.2228 0.2222
T8 0.0546 0.0557 0.0556

When the CR D 0.1055, the weights of task 5 and task 7 both are 0.2183, the
weight of task 3 is 0.1669, while the weights of task 2 and task 1, are 0.1238 and
0.1091, respectively. However, the weights of task 4, task 6, and task 8 are identical,
0.0546.

When the CR is decreased to 0.0504, the weights of task 5 and task 7 both
increased to 0.2228. The weight of task 3 also increased to 0.1825, and the weight
of task 1 increased slightly to 0.1114. However, the weight of task 2 decreased to
0.0933. The weights of task 4, task 6, and task 8 increased slightly to 0.0557 from
0.0546.

When the CR is decreased to 0, namely, the comparison matrix is completely
consistent. The priority weights have been changed. The weights of task 3, task 5,
and task 7 become 0.2222, the weights of task 2, task 4, and task 6 are 0.0556, and
the weight of task 1 is 0.1111.

Therefore, the computing resource allocation will be different for the tasks under
different consistency ratios.
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7.2 Risk Assessment and Decision Analysis by the IBMM

7.2.1 Background of Risk Assessment and Decision Analysis

Over the past few decades, risk assessment and decision analysis has been an active
research area (For instance: Reckhow 1994; Bonano et al. 2000; Hämäläinen et al.
2000; Khadam and Kaluarachchi 2003; Linkov et al. 2006; Krewski et al. 2009;
Wagner et al. 2009; Peng et al. 2008, 2011a, b, c). The decision analysts have
to make quick and efficient decision for multi-criteria decision making (MCDM)
problems such as identifying the key factors of the risk and the potential risk,
determining risk level and risk consequences, analyzing the uncertain variables of
a decision, and considering different preferences etc. For instance, the emergency
managers have to select emergency prevention alternatives, emergency pre-response
plans, emergency response alternatives, and emergency recovery alternatives (Hu
et al. 2007).

The AHP (analytical hierarchy process), as a widely used MCDM method, is
often implemented in the Benefit – Opportunity – Cost – Risk (BOCR) analysis
to improve the effectiveness of risk assessment and decision analysis (Wijnmalen
2007; Saaty 2008; Aguilar-Lasserre et al. 2009; Saaty and Zoffer 2011). However,
in reality, risk assessment and decision analysis problems are often too complicated
to be structured hierarchically. Therefore, the analytical network process (ANP)
is widely used to assess the key factors of risks and analyze the impacts and
preferences of decision alternatives. When the ANP is applied to assess and analyze
the factors of the existing risk and potential risks as well as the impacts of a
decision for an emergent event, the consistency of the comparison matrix and
the inconsistent elements should be identified and adjusted as soon as possible.
The risk assessment and decision analysis of an emergent event is a typical time-
critical information service which is highly dependent on time and information.
To improve the efficiency of response decision making in risk assessment and
decision analysis, in Ergu et al. (2011a, d), a maximum eigenvalue threshold index
method is proposed as the new consistency index for the ANP. A bias block
diagonal matrix consists of the inconsistent comparison matrices is introduced to
rapidly identify and adjust the inconsistent elements in the original inconsistent
comparison matrices when the ANP is applied to the risk assessment and decision
analysis.

7.2.2 Illustrative Examples

To further illustrate the maximum eigenvalue threshold index and the induced
bias block matrix as described in Chap. 2 for rapidly identifying the inconsistent

http://dx.doi.org/10.1007/978-3-642-29213-2_2
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Fig. 7.3 The structure of selecting the best computer system

elements of the comparison matrices when the ANP is applied in risk assessment,
decision analysis and emergency management, two public-domain examples are
revised to test the proposed method.

Example 7.3. With the development of the information communication technology
(ICT), the computer system (CS) is increasingly important and becoming one
of the central components in risk assessment and decision analysis. However,
CS is not reliable in emergent events such as earthquake, fire emergence
even stolen/Hi-jack. In such scenarios, the emergency managers have to
select the most reliable computer system. The example first introduced by
Triantaphyllou and Mann (1995) and used in Chap. 2, is again used to illustrate
the proposed method. The structure of this example is shown in Fig. 7.3.
Suppose there are three alternative configurations, system A, system B, and
system C. There are also four criteria, hardware expandability, hardware
maintainability, financing available, and user friendly characteristics of the
operating system and related available software, denoted as C1, C2, C3, and C4
respectively.

Since the Gradual-level consistency test and inconsistency identification method
is relatively simple compared with the Whole-Level Method, therefore, the whole
level method is used to test the consistency and identify the inconsistent elements
in this example. The whole process can be divided into two stages, consistency test
and inconsistency identification.

Stage I: Test the consistency of all the comparison matrices using whole-level
method.

Step 1: Construct the block diagonal matrix B showed below using the matrices A,
C1, C2, C3 and C4.

http://dx.doi.org/10.1007/978-3-642-29213-2_2
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Columns 1 through 11 Columns 12 through 16

1:0000 5:0000 3:0000 7:0000 0 0 0 0 0 0 0 0 0 0 0 0

0:2000 1:0000 0:3333 5:0000 0 0 0 0 0 0 0 0 0 0 0 0

0:3333 3:0000 1:0000 6:0000 0 0 0 0 0 0 0 0 0 0 0 0

0:1429 0:2000 0:1667 1:0000 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1:0000 6:0000 8:0000 0 0 0 0 0 0 0 0 0

0 0 0 0 0:1667 1:0000 4:0000 0 0 0 0 0 0 0 0 0

0 0 0 0 0:1250 0:2500 1:0000 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1:0000 7:0000 0:2000 0 0 0 0 0 0

0 0 0 0 0 0 0 0:1429 1:0000 0:1250 0 0 0 0 0 0

0 0 0 0 0 0 0 5:0000 8:0000 1:0000 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1:0000 8:0000 6:0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0:1250 1:0000 0:2500 0 0 0

0 0 0 0 0 0 0 0 0 0 0:1667 4:0000 1:0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1:0000 5:0000 4:0000

0 0 0 0 0 0 0 0 0 0 0 0 0 0:2000 1:0000 0:3333

0 0 0 0 0 0 0 0 0 0 0 0 0 0:2500 3:0000 1:0000

Step 2: Calculate the eigenvalue of block diagonal matrix B, and identify the
maximum eigenvalues of the corresponding block diagonal sub-matrix A, C1,
C2, C3 and C4. That is:

�0
max D 4:2365; �1

max D 3:1356; �2
max D 3:2470; �3

max D 3:1356;

�4
max D 3:0858

Step 3: Test the consistency using the maximum eigenvalue threshold method.
That is:

��i
max D �

�0
max; �1

max; �2
max; �3

max; �4
max

�� �

�4
max thrd ; �3

max thrd ; �3
max thrd ; �3

max thrd ; �3
max thrd

�

D .3:1356; 3:2470; 3:1356; 3:0858/ � .4:267; 3:104; 3:104; 3:104; 3:104/

D .�0:0305; 0:0316; 0:143; 0:0316; �0:0182/

Obviously, only ��0
max < 0 and ��4

max < 0, which mean only the two compari-
son matrices A and C 4 are consistent, and other matrices are inconsistent.

Stage II: Identify the inconsistent elements using the whole level identification
principal.

Step 1: Construct the whole block matrix B using all the inconsistent matrices C1,
C2 and C3.

1:0000 6:0000 8:0000 0 0 0 0 0 0

0:1667 1:0000 4:0000 0 0 0 0 0 0

0:1250 0:2500 1:0000 0 0 0 0 0 0

0 0 0 1:0000 7:0000 0:2000 0 0 0

0 0 0 0:1429 1:0000 0:1250 0 0 0

0 0 0 5:0000 8:0000 1:0000 0 0 0

0 0 0 0 0 0 1:0000 8:0000 6:0000

0 0 0 0 0 0 0:1250 1:0000 0:2500

0 0 0 0 0 0 0:1667 4:0000 1:0000
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Step 2: Introduce the whole induced bias block matrix using the formula C D
BB � 3B . That is

0 �4:0000 16:0000 0 0 0 0 0 0

0:3333 0 �2:6667 0 0 0 0 0 0

�0:0833 0:5000 0 0 0 0 0 0 0

0 0 0 0 �5:4000 0:6750 0 0 0

0 0 0 0:4821 0 �0:0964 0 0 0

0 0 0 �3:8571 27:0000 0 0 0 0

0 0 0 0 0 0 0 16:0000 �4:0000

0 0 0 0 0 0 �0:0833 0 0:5000

0 0 0 0 0 0 0:3333 �2:6667 0

Step 3: The largest values, 16, 27 and 16 in each sub-matrix, are located at 1st row
and 3rd column, 6th row and 5th column, 7th row and 8th column, respectively.

Step 4: The corresponding vectors are

r1 D �

1 6 8 0 0 0 0 0 0
�

and

cT
3 D �

8 4 1 0 0 0 0 0 0
�

r6 D �

0 0 0 5 8 1 0 0 0
�

and

cT
5 D �

0 0 0 7 1 8 0 0 0
�

r7 D �

0 0 0 0 0 0 1 8 6
�

and

cT
8 D �

0 0 0 0 0 0 8 1 4
�

Step 5: The corresponding scalar products bi .i D 1; 2; 3/ are

b1 D r1 � cT
3 D �

8 24 8 0 0 0 0 0 0
�

b2 D r6 � cT
5 D �

0 0 0 35 8 8 0 0 0
�

b3 D r7 � cT
8 D �

0 0 0 0 0 0 8 8 24
�

Step 6: The corresponding bias identifying vectors fi .i D 1; 2; 3/ are

f1 D r1 � cT
3 � b13 D �

0 16 0 �8 �8 �8 �8 �8 �8
�

f2 D r6 � cT
5 � b65 D ��8 �8 �8 27 0 0 �8 �8 �8

�

f3 D r7 � cT
8 � b78 D ��8 �8 �8 �8 �8 �8 0 0 16

�

Step 7: From the scalar products bi .i D 1; 2; 3/ and the bias identifying vectors
fi .i D 1; 2; 3/, the inconsistent values are b12b23 D 24, b64b45 D 35 and
b79b98 D 24, which are corresponding the inconsistent elements C 112C 123 D
24, C 231C 212 D 35 and C 313C 332 D 24.
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Furthermore, c12 D �4 < 0, c23 D �2:6667 < 0, c64 D �3:8571 < 0, c45 D
�5:4 < 0, c79 D �4 < 0 and c98 D �2:6667 < 0. These inequalities indicate that
all values of b12, b23, b64, b45, b79 and b98 are probably too large. That is, C 112, C 123,
C 231, C 212, C 313 and C 332 are too large, and their values should be decreased.
Namely, C 112C 123 D 8, C 231C 212 D 8 and C 313C 332 D 8. For instance,

C 112 D 4; C 121 D 1

4
C 123 D 2; C 132 D 1

2

C 231 D 2; C 213 D 1

2
C 212 D 4; C 221 D 1

4

C 313 D 4; C 331 D 1

4
C 332 D 2; C 323 D 1

2

Then, the corresponding values in the comparison matrices C1, C2, and C3 are
replaced with the above values, and reconstruct the block diagonal matrix B , which
is shown as follows:

1:0000 4:0000 8:0000 0 0 0 0 0 0

0:2500 1:0000 2:0000 0 0 0 0 0 0

0:1250 0:5000 1:0000 0 0 0 0 0 0

0 0 0 1:0000 4:0000 0:5000 0 0 0

0 0 0 0:2500 1:0000 0:1250 0 0 0

0 0 0 2:0000 8:0000 1:0000 0 0 0

0 0 0 0 0 0 1:0000 8:0000 4:0000

0 0 0 0 0 0 0:1250 1:0000 0:5000

0 0 0 0 0 0 0:2500 2:0000 1:0000

The corresponding maximum values of the diagonal sub-matrices in the block
diagonal matrix B can be calculated by calculating the eigenvalue of matrix B .
Three of the maximum values are 3, which are equal to the order 3, therefore, they
are consistent comparison matrices. We also can calculate the bias matrix C using
the formula C D BB � 3B , which is listed below.

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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Fig. 7.4 The school choice hierarchy

Therefore, the consistencies of all the comparison matrices can easily be tested
simultaneously by the proposed maximum eigenvalue index, and the inconsistent
elements of the inconsistent comparison matrices can also be identified and adjusted
simultaneously by the proposed Whole-level identification method.

Example 7.4. In Wenchuan Earthquake, many schools were destroyed. Survived
students, especially high middle school students, have to transfer and select another
school to continue their study. The ANP can be used to help the students selecting
the best school. To further illustrate the proposed method in such scenario, the best
school selection example first introduced by Saaty (1993) is used in this paper.
In addition, this example was again used by Saaty (2008) to illustrate the ANP
Formulation of the Classic AHP School Example. The school choice hierarchy is
showed in Fig. 7.4. There are also six pairwise comparison matrices in this hierarchy
structure. One with order six .6 � 6/ with respect to the Goal, satisfaction with
school, six comparison matrices with order three .3 � 3/ with respect to the six
criteria, Learning, Friends, School Life, Vocational Training, College Preparation
and Music Classes, which are connected to the three alternatives.

The Whole-level consistency test and inconsistency identification methods have
been illustrated in previous example, therefore, the Gradual-level method is used in
this example to test the consistency and identify the inconsistent elements.

Stage I: Test the consistencies of all the comparison matrices using Gradual-level
method.

Step 1: Construct the corresponding block diagonal matrix B1 and B2 showed
below respectively using the matrix A in the first level, and the matrices C1,
C2, C3, C4, C5, and C6 in the second level.

1:0000 4:0000 3:0000 1:0000 3:0000 4:0000

0:2500 1:0000 7:0000 3:0000 0:2000 1:0000

0:3333 0:1429 1:0000 0:2000 0:2000 0:1667

1:0000 0:3333 5:0000 1:0000 1:0000 0:3333

0:3333 5:0000 5:0000 1:0000 1:0000 3:0000

0:2500 1:0000 6:0000 3:0000 0:3333 1:0000
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and

Columns 1 through 11 Columns 12 through 18

1:0000 0:3333 0:5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3:0000 1:0000 3:0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2:0000 0:3333 1:0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1:0000 1:0000 1:0000 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1:0000 1:0000 1:0000 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1:0000 1:0000 1:0000 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1:0000 5:0000 1:0000 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0:2000 1:0000 0:2000 0: 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1:0000 5:0000 1:0000 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1:0000 9:0000 7:0000 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0:1111 1:0000 0:2000 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0:1429 5:0000 1:0000 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1:0000 0:50000 1:0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2:0000 1:0000 2:0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1:0000 0:50000 1:0000 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1:0000 6:0000 4:0000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0:1667 1:0000 0:3333

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0:2500 3:0000 1:0000

Step 2: Calculate the maximum eigenvalues of block diagonal matrix B1 and B2,
and identify the corresponding eigenvalues of comparison matrices A, C1, C2,
C3, C4, C5, and C6, denoted as �i

max .i D 0; 1; 2; : : : ; 6/. We get
�0

max D 7:4199 and

�1
max D 3:0536; �2

max D 3; �3
max D 3; �4

max D 3:2085; �5
max D 3;

�6
max D 3:0536

Step 3: Test the consistencies using the maximum eigenvalue threshold method.
That is:

��0
max D �0

max � �6
lim max D 7:4199 � 6:781 D 0:6389 > 0

��i
max D .�1

max; �2
max; �3

max; �4
max; �5

max; �6
max/ � �3

lim max

D .3:0536; 3; 3; 3:2085; 3; 3:0536/ � 3:104

D .�0:0504; �0:1040; �0:1040; 0:1045; �0:1040; �0:0504/

Since ��0
max D 0:6389 > 0 and ��4 D 0:1045 > 0, therefore, the comparison

matrix A and C4 are inconsistent. Go to the second stage. The whole-level
identification method is used here, because there are only two inconsistent
comparison matrices.

Stage II: Identify the inconsistent elements using the Whole-level identification
principal.

Step 1: Construct the whole block matrix B using the inconsistent matrices A and
C4.
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1:0000 4:0000 3:0000 1:0000 3:0000 4:0000 0 0 0

0:2500 1:0000 7:0000 3:0000 0:2000 1:0000 0 0 0

0:3333 0:1429 1:0000 0:2000 0:2000 0:1667 0 0 0

1:0000 0:3333 5:0000 1:0000 1:0000 0:3333 0 0 0

0:3333 5:0000 5:0000 1:0000 1:0000 3:0000 0 0 0

0:2500 1:0000 6:0000 3:0000 0:3333 1:0000 0 0 0

0 0 0 0 0 0 1:0000 9:0000 7:0000

0 0 0 0 0 0 0:1111 1:0000 0:2000

0 0 0 0 0 0 0:1429 5:0000 1:0000

Step 2: Introduce the whole induced bias block matrix using the formula

C D BB � nB

D diag .A; C 4/ diag .A; C 4/ � diag .6; 3/ diag .A; C 4/ W
0 3:7619 60:0000 23:6000 �8:2667 �2:1667 0 0 0

4:6500 0 �5:2500 �7:1500 4:6833 �0:2333 0 0 0

�0:9893 1:9952 0 0:6619 0:4841 1:4762 0 0 0

�1:8333 8:7143 �7:6667 0 0:1778 6:8333 0 0 0

3:3333 �14:6190 39:0000 21:3333 0 �4:5000 0 0 0

4:3611 0:5238 0:4167 �7:2167 3:8167 0 0 0 0

0 0 0 0 0 0 0 26:0000 �5:2000

0 0 0 0 0 0 0:0825 0 0:5778

0 0 0 0 0 0 0:4127 �3:7143 0

Step 3: The elements with largest absolute values in the sub-matrices A and C4 are
60 and 26 respectively, which are located at 1st row and 3rd column, 7th row and
8th column, respectively.

Step 4: The vectors are

r1 D �

1 4 3 1 3 4 0 0 0
�

and

cT
3 D �

3 7 1 5 5 6 0 0 0
�

r7 D �

0 0 0 0 0 0 1 9 7
�

and

cT
8 D �

0 0 0 0 0 0 9 1 5
�

Step 5: The scalar products b are

b1 D r1 � cT
3 D �

3 28 3 5 15 24 0 0 0
�

b2 D r7 � cT
8 D �

0 0 0 0 0 0 9 9 35
�
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Step 6: The bias identifying vectors f are

f1 D r1 � cT
3 � b13 D �

0 25 0 2 12 21 �3 �3 �3
�

f2 D r7 � cT
8 � b78 D ��9 �9 �9 �9 �9 �9 0 0 26

�

Step 7: From the scalar products b1 and b2 and the bias identifying vectors f1 and
f2, we can find that the inconsistent values are b12b23 D 28 and b79b98 D
35, which are corresponding the inconsistent elements A12A23 D 28 and
C 313C 332 D 35. Besides, since there are three elements in f1 far away from
b13, therefore, the corresponding a13 might be too small.

Furthermore, c12 D 3:7619 > 0, c23 D �5:25 < 0, c79 D �5:2 < 0, c98 D
�3:7143 < 0 and c13 D 60 > 0. These inequalities indicate that the value of b12

is too small; the value of b23 is too large; the values of b79 and b98 are probably
too large, respectively. Besides, the value of b79b98 is supposed to be 9 or close to
9 instead of 35. That is, the value of a12 is small; the value of a23 is too large; the
values of c313 and c332 are possible too large and a13 is too small. Those elements
should be revised. For instance, Let:

a13 D 9; a31 D 1

9
; a23 D 3; a32 D 1

3

c313 D 2; c331 D 1

2
c332 D 4; c323 D 1

4

The values of the elements in the sub-matrix A and sub-matrix C3 are replaced
with the above corresponding values of elements and calculate their maximum
eigenvalues to test the consistency. That is:

The maximum eigenvalues are �0
max D 7:1374 and �4

max D 3:0246:

Test the consistencies using the maximum eigenvalue threshold method.

�0
max D �0

max � �6
lim max D 7:1374 � 6:781 D 0:3564 > 0

��4
max D �3

max � �3
lim max D 3:0246 � 3:104 D �0:0794 < 0

The comparison matrix C4 passed the consistency test, however, the comparison
matrix A is still inconsistent. Identify the inconsistent elements in the comparison
matrix A using the second largest bias value 39, the third largest bias value 23.6,
and the fourth largest bias value 21.3333. These three elements are located at 5th

row and 3rd column, 1st row and 4th column, 5th row and 4th column, respectively.
Repeat the above steps, the corresponding bias identifying vector fi .i D 1; 2; 3/

becomes:
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f1 D r5 � cT
3 � b53 D � �4 30 0 0 0 13 �5 �5 �5

�

f2 D r1 � cT
4 � b14 D �

0 11 �0:4 0 2 11 �1 �1 �1
�

f3 D r5 � cT
4 � b54 D � �0:6667 14 0 0 0 8 �1 �1 �1

�

From the above three bias identifying vectors f1, f2 and f3, we can find that the
inconsistent values are:

In f1 W b52b23 D 35 and b56b63 D18 , a52a23 D 35 and a56a63 D18 in matrix A

In f2 W b12b24 D 11 and b16b64 D11 , a12a24 D11 and a16a64 D 11 in matrix A

In f3 W b52b24 D14 and b56b64 D8 , a52a24 D 14 and a56a64 D 8 in matrix A

where the symbol ‘ ,’ denotes “corresponding to”.
The following inequalities show the inconsistent elements:

c52 D �14:619 < 0 ) a52 is too large

c23 D �5:25 < 0 ) a23 is too large

c56 D �4:5 < 0 ) a56 is too large

c63 D 0:41675 > 0 ) a63 is slightly small

c12 D 3:7619 > 0 ) a12 is too small

c24 D �7:15 < 0 ) a24 is too large

c16 D �2:1667 < 0 ) a16 is too large

c64 D �7:2167 < 0 ) a64 is too large

For instance, decrease the values of the three elements with largest absolute value
a52, a24 and a64. Let

a52 D 1; a25 D 1I a24 D 1=2; a42 D 2I a64 D 1=2; a64 D 2

Replace all the corresponding values in the original comparison matrix A with
the above values and calculate the maximum value of matrix A, we can get �0

max D
6:6156 < �6

max thrd D 6:781. The comparison matrix passes the consistency test. If
the inconsistent elements identified in the first time, a13 and a23, are replace with
a13 D 9; a31 D 1

9
, a23 D 3; a32 D 1

3
, and continue to calculate the maximum

eigenvalue of comparison matrix A, then �0
max D 6:3174 < �6

max thrd D 6:781. The
comparison matrix A passes the consistency test with smaller maximum eigenvalue,
which is corresponding to the small CR.



126 7 Applications of IBMM

References

Aguilar-Lasserre AA, Bautista Bautista MA, Ponsich A, Gonzalez Huerta MA (2009) An AHP-
based decision-making tool for the solution of multiproduct batch plant design problem under
imprecise demand. Comput Oper Res 36(3):711–736

Bonano EJ, Apostolakis GE, Salter PF, Ghassemi A, Jennings S (2000) Application of risk
assessment and decision analysis to the evaluation, ranking and selection of environmental
remediation alternatives. J Hazard Mat 71(1–3):35–37

Buyya R, Chee SY, Venugopal S, Roberg J, Brandic I (2009) Cloud computing and emerging
IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Fut Gener
Comput Syst 25(6):599–616

Ergu D, Kou G, Peng Y, Shi Y (2011a) A new consistency index for comparison matrices in the
ANP, New State of MCDM in the 21st Century. Lecture notes in economics and mathematical
systems, vol 648, part 1, pp 47–56

Ergu D, Kou G, Peng Y, Shi Y (2011b) A simple method to improve the consistency
ratio of the pair-wise comparison matrix in ANP. Eur J Oper Res 213(1):246–259.
doi:10.1016/j.ejor.2011.03.014

Ergu D, Kou G, Peng Y, Shi Y, Shi Yu (2011d) The analytic hierarchy process: task
scheduling and resource allocation in cloud computing environment. J Supercomput.
doi:10.1007/s11227-011-0625-1

Ergu D, Kou G, Shi Y, Shi Yu (2011e) Analytic network process in risk assessment and decision
analysis. Comput Oper Res. doi:10.1016/j.cor.2011.03.005

Fang YQ, Wang F, Ge JW (2010) Task scheduling algorithm based on load balancing in cloud
computing. In: Web information systems and mining lecture notes in computer science, 2010,
vol 6318/2010, pp 271–277, doi: 10.1007/978-3-642-16515-3 34

Fujiwara I, Aida K, Ono I (2009) Market-based resource allocation for distributed computing.
IPSJ SIG technical report, vol 2009-HPC-121, no. 34,http://www.alab.ip.titech.ac.jp/papers/
swopp2009-fujiwara.pdf
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Chapter 8
Induced Arithmetic Average Bias Matrix Model
(IAABMM)

In previous Chapters, IBMM and its related extensions and applications are
presented. In Ergu and Kou (2012), another form of induced bias matrix model,
induced arithmetic average bias matrix model (IAABMM), is proposed and proved
mathematically, which is easier to be understood than the previous model. In
addition, two simpler inconsistency identification processes are also analyzed and
proposed. An estimating formula of inconsistency adjustment for IAABMM is
derived for the first time and illustrated by two numerical examples. In this Chapter,
the details of IAABMM will be described.

8.1 The Theorem of IAABMM

To effectively identify the inconsistent elements while preserving most of the
original information in a PCM, the arithmetic average bias is induced in this paper.
The proposed theorem is described below.

Theorem 8.1. If the PCM A is perfectly (or approximately) consistent, then the
induced arithmetic average bias matrix C should be (or close) zeroes. That is, the
following induced bias matrix holds:

C D 1

n
AA � A D �

cij
�

( D 0 if aikakj D aij

� 0 if aikakj � aij

(8.1)

where A is the original PCM, n is the order of A, while cij D 1

n

nP

kD1

aikakj � aij is

the induced arithmetic average bias.

Proofs. If the PCM A D �

aij
�

n�n
is perfectly consistent, that is, aikakj D aij for all

i; j and k. Then,

G. Kou et al., Data Processing for the AHP/ANP, Quantitative Management 1,
DOI 10.1007/978-3-642-29213-2 8, © Springer-Verlag Berlin Heidelberg 2013
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cij D 1

n

nX

kD1

aikakj � aij D 1

n

nX

kD1

aij � aij D 1

n
naij � aij D 0

Therefore, the induced arithmetic average bias matrix C is a zero matrix if matrix
A is perfectly consistent. The equality symbol “D” is replaced by the approximated
symbol “�”, then the approximately consistent case can easily be proved.

Corollary 8.1. If matrix A is inconsistent, then the induced arithmetic average bias
matrix C cannot be zeros. More precisely, there is at least one entry in i th row or
column of matrix C greater than 0.

Proofs. If matrix A is inconsistent, aij ¤ aikakj holds at least for one of the
i; j; k .i; j; k D 1; 2; � � � ; n/. Specifically, for any i, there exist j and k such that
aij ¤ aikakj. Saaty (1980) also proved that for the maximal eigenvalue �max of A,
�max � n, and matrix A is consistent if and only if �max D n. Namely, �max> n if
matrix A is inconsistent. In addition, the corresponding unique eigenvector !max is
a positive vector.

Applying the following equation to matrix C

A!max D �max!max (8.2)

We get

C !max D
�

1

n
AA � A

�

!max D 1

n
AA!max � A!max

D 1

n
A�max!max � �max!max D 1

n
�2

max!max � �max!max

D 1

n
�max.�max � n/!max (8.3)

Since �max>n, C !max is a positive vector. Consequently, C cannot have any row
containing only zeros. More precisely, any row of C must contain at least one
positive element.

8.2 The Inconsistency Identification Processes of IAABMM

Based on the Corollary 8.1, the inconsistent element can be identified by observing
and analyzing the absolute largest value in matrix C. The processes of inconsistency
identification proposed in Ergu et al. (2011b) can be used to identify the inconsistent
element in this model. A new way of inconsistency identification is proposed in the
following.
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The Principle of Inconsistency Identification

In the proposed model C D AA/n�A, if the inconsistent element is identified firstly
through analyzing the absolute largest value denoted as cmax

ij in the matrix C, then
we get

cmax
ij D 1

n

nX

kD1

aikakj � aij (8.4)

If the cmax
ij is positive, the first term of Eq. (8.4) is greater than aij, usually

indicating the arithmetic average of aikakj.k D 1; 2; � � � ; n/ is greater than aij, which
can be caused by any of aik or akj. Sometimes it is caused by aij because it is
too small. So we need to create the i th row or j th column to further identify
the inconsistent element using the vector dot product method, which could be
complicated. Details are referred to Ergu et al. (2011b). However, if aij is the

inconsistent element, here assume it is larger than 1
n

nP

kD1

aikakj (if it is too small, then

we can find another inconsistent element aji that would be too large since they are

reciprocal), then cij D 1
n

nP

kD1

aikakj � aij must be the negative largest value, denoted

as c� max
ij . Conversely, cji D 1

n

nP

kD1

ajkaki � aji must be far away from zero and be

positive. Therefore, the principle of inconsistency identification is to observe firstly
the negative largest value in matrix C, denoted as c� max

ij , then the corresponding
element in matrix A, aij, probably is the inconsistent elements.

The specific principles of inconsistency identification include: (1) if the c� max
ij is

far greater than the other negative bias elements, and its corresponding bias element
cji is positive and larger than zero, then aij can be identified as the inconsistent
element; (2) If there are some negative bias elements ckl, cmn, cpq in matrix C that are
close to the c� max

ij , then create bias pairs using their reciprocal values, and analyze
their absolute bias values and distributions. The elements with largest absolute bias
as well as relatively symmetric distribution with respect to the reference point zero
are regarded as the inconsistent elements.

For instance, assume the closest negative largest bias elements aforementioned
and their reciprocals are,

.a/
�

c� max
ij ; cji

�

D .�4:3 ; 1:3/ I .b/ .ckl; clk/ D .�3:6 ; 1:8/

.c/ .cmn; cnm/ D .�3:4 ; 0:13/ I .d/
�

cpq ; cqp

� D .�3:1 ; 1:1/

Their absolute bias values are.

.a/; �cij D
ˇ
ˇ
ˇc� max

ij � cji

ˇ
ˇ
ˇ D 5:6I .b/; �ckl D jckl � clkj D 5:4

.c/; �cmn D jcmn � cnmj D 3:53I .d/; �cpq D ˇ
ˇcpq � cpq

ˇ
ˇ D 4:2
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Although �cij D 5:6 is larger than �ckl D 5:4, the distribution of �ckl is
relatively more symmetric than that of �cij with respect to the reference point zero,
indicating that the corresponding element aij is too large, but its reciprocal aij is not
too mall. However, the corresponding element clk is large, and its reciprocal element
ckl is too small. Therefore, the element ckl can be identified as the most inconsistent
element.

The Processes of Inconsistency Identification and Adjustment

The specific steps of inconsistency identification and adjustment include:

Step I: Inconsistency identification

Step 1: Construct the induced bias matrix C using C D 1
n
AA � A

Step 2: Observe the negative largest bias values in matrix C
Step 3: Identify the inconsistent elements using the identification method afore-

mentioned.

Step II: Inconsistency adjustment

Step 1: Calculate the inconsistent element using the estimating formula (8.5) (see
Sect. 8.3)

Step 2: Test the consistency of the revised matrix A by replacing the inconsistent
elements with the estimated values.

8.3 The Estimating Formula of Inconsistency Adjustment

When the inconsistent elements are identified, the decision makers are asked to
revise their judgments to improve the consistency ratio. However, it is sometimes
time-consuming and consumed high cost as well as delaying the decision making.
Therefore, it is necessary to derive a formula to estimate the possible value for
the identified inconsistent elements. Assume the identified inconsistent element in
matrix A is aij, then the value of aij can be estimated by analyzing the formula of
cij in the induced bias matrix C. Since aij is inconsistent, aij ¤ aikakj. Suppose
aikakj D a0

ij .k ¤ i; j /, then

cij D 1

n

nX

kD1

aikakj � aij D 1

n
Œ2aijC.n � 2/a0

ij� � aij (8.5)

From Eq. (8.5), the value of a0
ij can be derived,

a0
ij D ncij C .n � 2/aij

n � 2
D n

n � 2
cij C aij (8.6)
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Therefore, the value of inconsistent element aij can be estimated by the value of
a0

ij, as shown in (8.6). The effectiveness of the proposed method and the estimating
formula of inconsistent element are illustrated by two numerical examples in the
following section.

Likewise, the estimating formula of inconsistent element in the model
C D AA�nA can also be derived. Details are shown below.

cij D
nX

kD1

aikakj � naij D 2aij C
nX

kD1
¤i;j

aikakj � naij D Œ2aijC.n � 2/a0
ij� � naij

(8.7)

a0
ij D cij C .n � 2/aij

n � 2
D 1

n � 2
cij C aij (8.8)

Formula (8.8) can be used to estimate the identified inconsistent elements when
IBMM is used.

8.4 Illustrative Examples

To illustrate the proposed model and demonstrate the processes of inconsistency
identification and adjustment proposed in Sects. 8.2 and 8.3, the Examples 1 and 2
introduced in Ergu et al. (2011b) is used as Examples 8.2 and 8.1 in this paper.

Example 8.1. The 8 � 8 pair-wise comparison matrix A first used in Ergu et al.
(2011b) as Example 2 is slightly inconsistent with CR D 0.1055 > 0.1 or �max D
9:0339 > �8

thrd D 8:89 (��max D 0:1439 > 0).

A D

2

6
6
6
6
6
6
6
6
6
6
6
4

1 2 1=2 2 1=2 2 1=2 2

1=2 1 4 1 1=4 1 1=4 1

2 1=4 1 4 1 4 1 4

1=2 1 1=4 1 1=4 1 1=4 1

2 4 1 4 1 4 1 4

1=2 1 1=4 1 1=4 1 1=4 1

2 4 1 4 1 4 1 4

1=2 1 1=4 1 1=4 1 1=4 1

3

7
7
7
7
7
7
7
7
7
7
7
5

Apply the proposed model to this matrix, details are as follows.

Step I: Inconsistency identification

Step 1: Construct the induced bias matrix C using C D 1
n
AA � A
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C D

0

B
B
B
B
B
B
B
B
@

0 �0:2344 0:9375 0 0 0 0 0

0:9375 0 �2:8125 1:8750 0:4688 1:8750 0:4688 1:8750

�0:2344 2:8125 0 �0:4688 �0:1172 �0:4688 �0:1172 �0:4688

0 �0:1172 0:4688 0 0 0 0 0

0 �0:4688 1:8750 0 0 0 0 0

0 �0:1172 0:4688 0 0 0 0 0

0 �0:4688 1:8750 0 0 0 0 0

0 �0:1172 0:4688 0 0 0 0 0

1

C
C
C
C
C
C
C
C
A

Step 2: Observe the negative largest bias values c� max
ij in matrix C. Here, there is

only one element with largest bias value, c� max
23 D �2:8125.

Step 3: Identify the inconsistent elements using the identification method. Since
there is only one element with negative largest bias value, c� max

23 D �2:8125,
and its reciprocal is c23 D 2:8125, therefore, the corresponding element a23 is
identified as the inconsistent elements.

Step II: Inconsistency adjustment

Step 1: Calculate the inconsistent element a23 using the estimating formula (8.8)
(see Sect. 8.3)

a0
23 D n

n � 2
c23 C a23 D 8

6
.�2:8125/ C 4 D 1

4

Step 2: Test the consistency of the revised matrix A by replacing the a23 and a32

with 1/4 and 4. We can get that �max D 8, and CR D 0.

Example 8.2. To illustrate such case that there are several negative large bias
elements in matrix C, the Example 8.1 used in Ergu et al. (2011b) is again
introduced in this paper. The 4 � 4 pair-wise comparison matrix A is inconsistent
with CR D 0.173 > 0.1 or �max D 4:4644 > �4

thrd D 4:267 (��max D 0:1974 > 0).

A D

0

B
B
@

1 1=9 3 1=5

9 1 5 2

1=3 1=5 1 1=2

5 1=2 2 1

1

C
C
A

Apply the proposed model to this matrix, we have:

Step I: Inconsistency identification

Step 1: Construct the induced bias matrix C using C D 1
n
AA � A

C D

0

B
B
@

0 0:1194 �1:2611 0:3306

�1:5833 0 5:2500 0:0750

0:9083 �0:0282 0 �0:1333

�1:2083 �0:0111 3:3750 0

1

C
C
A
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Step 2: The negative largest bias values c� max
ij in matrix C are c� max

21 D �1:5833,
c13 D �1:2611 and c41 D �1:2083.

Step 3: Identify the inconsistent elements using the absolute bias value and their
distribution method. We have

.1/
�

c� max
21 ; c12

� D .�1:5833; 0:1194/ I .2/ .c13; c31/ D .�1:2611; 0:9083/ ;

.3/ .c41; c14/ D .�1:2083 ; 0:3306/ I

Their absolute bias values are.

.1/; �c21 D jc� max
21 � c12j D 1:7027I .2/; �c13 D jc13 � c31j D 2:1694;

.3/; �c41 D jc41 � c14j D 1:5389I

Although c21 has the negative largest bias value, its reciprocal c12, 0.1194, is too
small, which is close to zero. It is shown that the corresponding element a21 is
not the inconsistent element. However, �c13 is largest absolute bias value, and
the distribution of .c13; c31/ D .�1:2611 ; 0:9083/ is relative symmetric with
respect to the reference point zero. Therefore, the corresponding element a13 is
identified as the inconsistent elements.

Step II: Inconsistency adjustment

Step 1: Calculate the inconsistent element a13 using the estimating formula (8.8)
(see Sect. 8.3)

a0
13 D n

n � 2
c13 C a13 D 4

2
.�1:2611/ C 3 D 0:4778 � 1

2

Step 2: Test the consistency of the revised matrix A by replacing the a13 and a31

with 1/2 and 2. We can get that �max D 4:0076, and C.R. D 0.0028 < 0.1 .
Therefore, the revised matrix passed the consistency test.

In the above two examples, the identified inconsistent elements and their
estimated value are the same ones calculated by the model C D AA � nA in Ergu
et al. (2011b) but the processes of inconsistency identification and adjustment are
simpler and easier.
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Inner-cluster, 13, 14

L
Level-by-level test, 19, 21
Linear or nonlinear equations, 61
Lower triangular matrix, 61, 63, 68, 69

M
Matrix order reduction, 35–38, 45, 51
Maximal eigenvalue, 122
Maximum eigenvalue threshold, 14–17, 19, 22
Method of maximum, 36
Method of minimum, 36, 48
Minimize all bias entries, 61–63, 65, 66, 68
Missing data estimation, 59–69
Missing values estimation, 4, 5, 59–62, 64,

66–68

G. Kou et al., Data Processing for the AHP/ANP, Quantitative Management 1,
DOI 10.1007/978-3-642-29213-2, © Springer-Verlag Berlin Heidelberg 2013

137



138 Index

Multiple criteria decision making (MCDM),
1, 110

N
Negative largest value, 123
Non-zero rows (columns) and sign

identification, 43–44, 57

O
Outer-cluster, 13, 14

P
Pairwise comparison matrix (PCM), 1–5,

72–75, 77–79, 81, 83–85, 121
Positive reciprocal matrix, 1
Preference conflict, 77
Priority vectors, 88

Q
Questionnaire design, 5
Questionnaire survey, 73, 75, 76, 81, 83, 84

R
Rank reversal, 5, 87–99
Resource allocation, 101–109
Reversal points, 88, 98
Risk assessment, 110–119

S
Scalar product of vectors, 34
Sensitivity analysis, 87, 88, 90–97, 99
Supermatrix of a network, 12, 13

T
Task scheduling, 101–109
Typical hierarchy structure, 9, 17, 18, 21

U
Uncertain score factor, 77
Unknown variables, 88
Upper triangular matrix, 61, 62

W
Whole-level test, 20, 21
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